MINIMAL TIMELIKE SURFACES IN A CERTAIN HOMOGENEOUS LORENTZIAN 3-MANIFOLD

被引:0
作者
Lee, Sungwook [1 ]
机构
[1] Univ Southern Mississippi, Dept Math, 118 Coll Dr,5045, Hattiesburg, MS 39406 USA
关键词
De Sitter space; harmonic map; homogeneous manifold; Lorentz surface; Lorentzian manifold; Minkowski space; minimal surface; solvable Lie group; spacetime; timelike surface;
D O I
10.2748/tmj/1512183633
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The 2-parameter family of certain homogeneous Lorentzian 3-manifolds which includes Minkowski 3-space, de Sitter 3-space, and Minkowski motion group is considered. Each homogeneous Lorentzian 3-manifold in the 2-parameter family has a solvable Lie group structure with left invariant metric. A generalized integral representation formula which is the unification of representation formulas for minimal timelike surfaces in those homogeneous Lorentzian 3-manifolds is obtained. The normal Gauss map of minimal timelike surfaces in those homogeneous Lorentzian 3-manifolds and its harmonicity are discussed.
引用
收藏
页码:621 / 635
页数:15
相关论文
共 9 条
[1]  
[Anonymous], 1997, 3 DIMENSIONAL GEOMET
[2]  
[Anonymous], 1983, CBMS Regional Conference Series in Math., vol. 50, Amer. Math. Soc
[3]  
Hawking SW., 1973, LARGE SCALE STRUCTUR, DOI DOI 10.1017/CBO9780511524646
[4]   Timelike minimal surfaces via loop groups [J].
Inoguchi, J ;
Toda, M .
ACTA APPLICANDAE MATHEMATICAE, 2004, 83 (03) :313-355
[5]  
Kobayashi O., 1983, TOKYO J MATH, V6, P297
[6]  
Lee S., 2008, Commun. Math. Anal., Conference, V1, P11
[7]   Maximal surfaces in a certain 3-dimensional homogeneous spacetime [J].
Lee, Sungwook .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (05) :536-543
[8]  
McNertney L, 1980, THESIS
[9]  
WOOD J.C., 1994, Aspects of Mathematics, V23, P29