The Galerkin Method for Nonclassical Equations of Mathematical Physics

被引:4
作者
Egorov, Ivan E. [1 ]
Fedorov, Valery E. [1 ]
Tikhonova, Irina M. [1 ]
Efimova, Elena S. [1 ]
机构
[1] North Eastern Fed Univ, 58,Belinskogo Str, Yakutsk 677000, Russia
来源
PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING (ICMM-2017) | 2017年 / 1907卷
关键词
BOUNDARY-PROBLEM; MIXED-TYPE;
D O I
10.1063/1.5012622
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present article is a review of authors's results obtained in the recent years by the Galerkin method. Boundary value problems for mixed type equations and equations with changing time direction are studied. Approximate solutions for every problem are constructed with the help of a special basis. Global a priori estimates are established in the domain. On the base of these estimates, the unique solvability of boundary values problems is proven. For most of the problems, error estimates of the Galerkin method are justified.
引用
收藏
页数:11
相关论文
共 35 条
[11]  
Egorov I. E., 2014, MATEM ZAMETKI SVFU, V21, P19
[12]  
Egorov I. E., 1999, MAT ZAMETKI YAKUTSK, V6, P26
[13]  
Egorov I. E., 2012, MAT ZAMETKI, V19, P20
[14]  
Egorov I. E., 2013, USBEKSKI MATEM Z, P33
[15]  
Egorov I. E., 2010, MAT ZAMETKI, V17, P41
[16]  
Egorov I. E., 2011, MATEM ZAMETKI YAGU, V18, P41
[17]  
Egorov I. E., 1999, MATEM ZAMETKI SVFU, V21, P14
[18]  
Egorov I.E., 1995, Higher-Order Nonclassical Equations of Mathematical Physics
[19]  
Egorov I. E., 2000, Nonclassical Operator-Differential Equations
[20]  
Egorov I. E., 1998, MATEM ZAMETKI YAGU, V5, P77