H*-algebras and quantization of para-Hermitian spaces

被引:1
作者
Van Dijk, Gerrit [1 ]
Pevzner, Michael [2 ]
机构
[1] Leiden Univ, Inst Math, NL-2300 RA Leiden, Netherlands
[2] Univ Reims, Math Lab, UMR CNRS 6056, F-51687 Reims, France
关键词
quantization; para-Hermitian symmetric spaces; Hilbert algebras;
D O I
10.1090/S0002-9939-08-09219-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present note we describe a family of H*-algebra structures on the set L-2(X) of square integrable functions on a rank-one para-Hermitian symmetric space X.
引用
收藏
页码:2253 / 2260
页数:8
相关论文
共 11 条
[2]  
Gradshteyn I. S., 2000, TABLE INTEGRALS SERI
[3]  
Kaneyuki S., 1985, Tokyo J. Math., V8, P81
[4]  
Loomis L., 1953, An Introduction to Abstract Harmonic Analysis
[5]  
Naimark MA., 1964, NORMED RINGS
[6]   Projective pseudodifferential analysis and harmonic analysis [J].
Pevzner, Michael ;
Unterberger, Andre .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 242 (02) :442-485
[7]   Algebras of symbols and modular forms [J].
Unterberger, A ;
Unterberger, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :121-143
[8]   Tensor products of maximal degenerate series representations of the group SL(n, R) [J].
Van Dijk, G ;
Molchanov, VF .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (01) :99-119
[9]   The Berezin form for rank one para-Hermitian symmetric spaces [J].
Van Dijk, G ;
Molchanov, VF .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (08) :747-799
[10]  
van Dijk G, 2007, J LIE THEORY, V17, P283