RISK-AVERSE OPTIMIZATION IN TWO-STAGE STOCHASTIC MODELS: COMPUTATIONAL ASPECTS AND A STUDY

被引:12
作者
Fabian, Csaba I. [1 ]
Wolf, Christian [2 ]
Koberstein, Achim [3 ]
Suhl, Leena [2 ]
机构
[1] Kecskemet Coll, Dept Informat, H-6000 Kecskemet, Hungary
[2] Univ Paderborn, DS&OR Lab, D-33098 Paderborn, Germany
[3] European Univ Viadrina, Dept Informat & Operat Management IOM, D-15207 Frankfurt, Oder, Germany
关键词
stochastic programming; risk-averse models; convex programming; cutting-plane methods; regularization; LEVEL BUNDLE METHODS; DOMINANCE CONSTRAINTS; DECOMPOSITION; FORMULATIONS; PROGRAMS; CRITERIA;
D O I
10.1137/130918216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the on-demand accuracy approach of Oliveira and Sagastizabal to constrained convex optimization. The resulting method is applied to risk-averse two-stage stochastic programming problems. We present a survey of risk-averse models. The appropriate oracle is formulated for the case of a conditional value-at-risk constraint. We discuss computational aspects and compare different approaches in a study.
引用
收藏
页码:28 / 52
页数:25
相关论文
共 54 条