WHY CAN'T THERE BE NUMBERS?

被引:1
作者
Builes, David [1 ]
机构
[1] NYU, Philosophy, New York, NY 10003 USA
关键词
ontology; mathematical objects; structuralism; properties; modality; IDENTITY; PARTICULARS; BARE;
D O I
10.1093/pq/pqab017
中图分类号
B [哲学、宗教];
学科分类号
01 ; 0101 ;
摘要
Platonists alum the existence of abstract mathematical objects, and Nominalists deny the existence of abstract mathematical objects. While there are standard arguments in favor of Nominalism, these arguments fail to account for the necessity of Nominalism. Furthermore, these arguments do nothing to explain why Nominalism is true. They only point to certain theoretical vices that might befall the Platonist. The goal of this paper is to formulate and defend a simple, valid argument for the necessity of Nominalism that seeks to precisifi the widespread intuition that mathematical objects are somehow 'spooky' or 'mysterious'.
引用
收藏
页码:65 / 76
页数:12
相关论文
共 59 条
  • [41] Paul Laurie Ann, 2017, A One Category Ontology. Being, Freedom, and Method: Themes from the Philosophy of Peter van Inwagen
  • [42] Bare Particulars Laid Bare
    Perovic, Katarina
    [J]. ACTA ANALYTICA-INTERNATIONAL PERIODICAL FOR PHILOSOPHY IN THE ANALYTICAL TRADITION, 2017, 32 (03): : 277 - 295
  • [43] What we talk about when we talk about numbers
    Pettigrew, Richard
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2018, 169 (12) : 1437 - 1456
  • [44] Quine WVO., 1960, Word and object
  • [45] Reck E., 2020, STANFORD ENCY PHILOS
  • [46] Dedekind's structuralism: An interpretation and partial defense
    Reck, EH
    [J]. SYNTHESE, 2003, 137 (03) : 369 - 419
  • [47] Resnik M., 1997, MATH SCI PATTERNS
  • [48] Rosen Gideon., 2006, IDENTITY MODALITY, P13, DOI DOI 10.1002/9780470998984.CH8
  • [49] Russell B., 1903, PRINCIPLES MATH
  • [50] Russell Bertrand, 1940, INQUIRY MEANING TRUT