Validated computations for connecting orbits in polynomial vector fields

被引:6
作者
van den Berg, Jan Bouwe [1 ]
Sheombarsing, Ray [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2020年 / 31卷 / 02期
关键词
Heteroclinic orbits; Validated computations; Computer-assisted proof; TRAVELING-WAVE SOLUTIONS; COVERING RELATIONS; HETEROCLINIC CONNECTIONS; DIFFERENTIAL-EQUATIONS; INVARIANT-MANIFOLDS; RIGOROUS NUMERICS; HOMOCLINIC ORBITS; INTEGRATION; PARAMETERIZATION; CONTINUATION;
D O I
10.1016/j.indag.2020.01.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a computer-assisted procedure for proving the existence of transverse heteroclinic orbits connecting hyperbolic equilibria of polynomial vector fields. The idea is to compute high-order Taylor approximations of local charts on the (un)stable manifolds by using the Parameterization Method and to use Chebyshev series to parameterize the orbit in between, which solves a boundary value problem. The existence of a heteroclinic orbit can then be established by setting up an appropriate fixed-point problem amenable to computer-assisted analysis. The fixed point problem simultaneously solves for the local (un)stable manifolds and the orbit which connects these. We obtain explicit rigorous control on the distance between the numerical approximation and the heteroclinic orbit. Transversality of the stable and unstable manifolds is also proven. (C) 2020 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:310 / 373
页数:64
相关论文
共 47 条
[1]   Travelling wave solutions of a fourth-order semilinear diffusion equation [J].
Akveld, ME ;
Hulshof, J .
APPLIED MATHEMATICS LETTERS, 1998, 11 (03) :115-120
[2]   A Homoclinic Solution for Excitation Waves on a Contractile Substratum [J].
Ambrosi, D. ;
Arioli, G. ;
Koch, H. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (04) :1533-1542
[3]   Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation [J].
Arioli, Gianni ;
Koch, Hans .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 113 :51-70
[4]   Integration of Dissipative Partial Differential Equations: A Case Study [J].
Arioli, Gianni ;
koch, Hans .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (03) :1119-1133
[5]  
Beyn W.-J., 2007, Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, P301
[6]   POLYNOMIAL INTERPOLATION AND A PRIORI BOOTSTRAP FOR COMPUTER-ASSISTED PROOFS IN NONLINEAR ODES [J].
Breden, Maxime ;
Lessard, Jean-Philippe .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (07) :2825-2858
[7]   Computation of maximal local (un)stable manifold patches by the parameterization method [J].
Breden, Maxime ;
Lessard, Jean-Philippe ;
James, Jason D. Mireles .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (01) :340-367
[8]   Global Bifurcation Diagrams of Steady States of Systems of PDEs via Rigorous Numerics: a 3-Component Reaction-Diffusion System [J].
Breden, Maxime ;
Lessard, Jean-Philippe ;
Vanicat, Matthieu .
ACTA APPLICANDAE MATHEMATICAE, 2013, 128 (01) :113-152
[9]   The parameterization method for invariant manifolds III:: Overview and applications [J].
Cabré, X ;
Fontich, E ;
de la Llave, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 218 (02) :444-515
[10]   Transversal connecting orbits from shadowing [J].
Coomes, Brian A. ;
Kocak, Hueseyin ;
Palmer, Kenneth J. .
NUMERISCHE MATHEMATIK, 2007, 106 (03) :427-469