An exactly solvable model for two-dimensional non-Hermitian quasicrystals

被引:0
|
作者
Kou, Su-Peng [1 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
关键词
D O I
10.1007/s11433-021-1824-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Topological Anderson insulators in two-dimensional non-Hermitian disordered systems
    Tang, Ling-Zhi
    Zhang, Ling-Feng
    Zhang, Guo-Qing
    Zhang, Dan-Wei
    PHYSICAL REVIEW A, 2020, 101 (06)
  • [42] Two-dimensional non-Hermitian skin effect in an ultracold Fermi gas
    Zhao, Entong
    Wang, Zhiyuan
    He, Chengdong
    Poon, Ting Fung Jeffrey
    Pak, Ka Kwan
    Liu, Yu-Jun
    Ren, Peng
    Liu, Xiong-Jun
    Jo, Gyu-Boong
    NATURE, 2025, 637 (8046) : 565 - 573
  • [43] Two-Dimensional Thermal Regulation Based on Non-Hermitian Skin Effect
    Huang, Qiang-Kai-Lai
    Liu, Yun-Kai
    Cao, Pei-Chao
    Zhu, Xue-Feng
    Li, Ying
    CHINESE PHYSICS LETTERS, 2023, 40 (10)
  • [44] Two-Dimensional Thermal Regulation Based on Non-Hermitian Skin Effect
    黄强开来
    刘云开
    曹培超
    祝雪丰
    李鹰
    Chinese Physics Letters, 2023, (10) : 102 - 107
  • [45] Two-Dimensional Thermal Regulation Based on Non-Hermitian Skin Effect
    黄强开来
    刘云开
    曹培超
    祝雪丰
    李鹰
    Chinese Physics Letters, 2023, 40 (10) : 102 - 107
  • [46] Exactly solvable two-dimensional quantum spin models
    Dmitriev, DV
    Krivnov, VY
    Ovchinnikov, AA
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (01) : 138 - 147
  • [47] Exactly solvable two-dimensional quantum spin models
    D. V. Dmitriev
    V. Ya. Krivnov
    A. A. Ovchinnikov
    Journal of Experimental and Theoretical Physics, 1999, 88 : 138 - 147
  • [48] Exactly solvable models for two-dimensional quantum systems
    Suzko, AA
    INVERSE AND ALGEBRAIC QUANTUM SCATTERING THEORY, 1997, 488 : 314 - 341
  • [49] Exactly solvable nonseparable and nondiagonalizable two-dimensional model with quadratic complex interaction
    Cannata, F.
    Ioffe, M. V.
    Nishnianidze, D. N.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
  • [50] A new exactly solvable two-dimensional quantum model not amenable to separation of variables
    Ioffe, M. V.
    Nishnianidze, D. N.
    Valinevich, P. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (48)