AUTOMATIC EXCLUSION OF SURFACE DEFORMATION IN INSAR DEM GENERATION USING DIFFERENTIAL RADAR INTERFEROMETRY

被引:1
|
作者
Yu, Jung Hum [1 ]
Ge, Linlin [1 ]
机构
[1] Univ New S Wales, Sch Surveying & Spatial Informat Syst, Sydney, NSW 2052, Australia
来源
2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2010年
关键词
InSAR; DInSAR; Digital elevation model; Ground deformation; Differential interferogram; SAR INTERFEROMETRY; SUBSIDENCE; ENVISAT;
D O I
10.1109/IGARSS.2010.5652135
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Digital Elevation Models (DEMs) are an important source of topographical data for many scientific and engineering applications. Where topographical data are unavailable, global coverage elevation data sets, typically DEMs from remotely sensed data, are the main sources of such information. Interferometric SAR (InSAR), is a useful method for low-cost, relatively precise and wide-coverage surface DEM generation. However, ground deformation should somehow be excluded from InSAR-based DEM generation. To identify surface deformation areas, the so-called Differential InSAR (DInSAR) is a commonly used method. In this paper, the authors propose a two-step DEM generation method: the ground deformation area detection using DInSAR technique and deformation area exclusion in InSAR DEM generation by detected mask.
引用
收藏
页码:2916 / 2919
页数:4
相关论文
共 50 条
  • [21] Mapping of surface deformation associated with the 7.8 magnitude Turkey earthquake of 6 Feb 2023 using radar interferometry
    Ibrahim, Heba Basyouni
    Salah, Mahmoud
    Zarzoura, Fawzi Hamed Fawzi
    El-Mewafi, Mahmoud
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2025, 10 (02)
  • [22] DEM generation using ERS-ENVISAT interferometry
    Wegmueller, Urs
    Santoro, Maurizio
    Werner, Charles
    Strozzi, Tazio
    Wiesmann, Andreas
    Lengert, Wolfgang
    JOURNAL OF APPLIED GEOPHYSICS, 2009, 69 (01) : 51 - 58
  • [23] Surface deformation extraction from small baseline subset synthetic aperture radar interferometry (SBAS-InSAR) using coherence-optimized baseline combinations
    Wang, Shunyao
    Zhang, Guo
    Chen, Zhenwei
    Cui, Hao
    Zheng, Yuzhi
    Xu, Zixing
    Li, Qihan
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 295 - 309
  • [24] Tracking the Seismic Deformation of Himalayan Glaciers Using Synthetic Aperture Radar Interferometry
    Mondal, Sandeep Kumar
    Bharti, Rishikesh
    Tiampo, Kristy F.
    REMOTE SENSING, 2025, 17 (05)
  • [25] Three-Dimensional Phase Unwrapping for Satellite Radar Interferometry, I: DEM Generation
    Osmanoglu, Batuhan
    Dixon, Timothy H.
    Wdowinski, Shimon
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (02): : 1059 - 1075
  • [26] Space-borne radar interferometry techniques for the generation of deformation time series: An advanced tool for Earth's surface displacement analysis
    Sansosti, E.
    Casu, F.
    Manzo, M.
    Lanari, R.
    GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [27] Method of Predicting Dynamic Deformation of Mining Areas Based on Synthetic Aperture Radar Interferometry (InSAR) Time Series Boltzmann Function
    Chi, Shenshen
    Yu, Xuexiang
    Wang, Lei
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [28] Usefulness of synthetic aperture radar (SAR) interferometry for digital elevation model (DEM) generation and estimation of land surface displacement in Jharia coal field area
    Bhattacharya, Atanu
    Arora, Manoj K.
    Sharma, Mukat L.
    GEOCARTO INTERNATIONAL, 2012, 27 (01) : 57 - 77
  • [29] DETECTION AND MONITORING OF SURFACE SUBSIDENCE ASSOCIATED WITH MINING ACTIVITIES IN THE WITBANK COALFIELDS, SOUTH AFRICA, USING DIFFERENTIAL RADAR INTERFEROMETRY
    Engelbrecht, Jeanine
    Inggs, Michael Raymond
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1596 - 1599
  • [30] Identification of Surface Deformation in InSAR Using Machine Learning
    Brengman, Clayton M. J.
    Barnhart, William D.
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2021, 22 (03)