Uniformly convergent numerical method for singularly perturbed convection-diffusion type problems with nonlocal boundary condition

被引:18
作者
Debela, Habtamu Garoma [1 ]
Duressa, Gemechis File [1 ]
机构
[1] Jimma Univ, Dept Math, Coll Nat Sci, Jimma, Ethiopia
关键词
nonlocal boundary condition; nonstandard finite difference; singularly perturbed problem; EQUATION;
D O I
10.1002/fld.4854
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we consider a class of singularly perturbed differential equations of convection-diffusion type with nonlocal boundary conditions. A uniformly convergent numerical method is constructed via nonstandard finite difference and numerical integration methods to solve the problem. The nonlocal boundary condition is treated using numerical integration techniques. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be epsilon-uniformly convergent.
引用
收藏
页码:1914 / 1926
页数:13
相关论文
共 14 条
[1]  
Ahmad B, 2005, DYNAM CONT DIS SER A, V12, P289
[2]  
Amiraliyev C., 2014, Int. J. Math. Comput, V22, P1
[3]   Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments [J].
Bansal, Komal ;
Sharma, Kapil K. .
NUMERICAL ALGORITHMS, 2017, 75 (01) :113-145
[4]  
Belarbi A, 2005, ELECTRON J DIFFER EQ
[5]  
Belarbi A, 2008, ARCH MATH-BRNO, V44, P1
[6]   Second-Order Boundary Value Problem with Integral Boundary Conditions [J].
Benchohra, Mouffak ;
Nieto, Juan J. ;
Ouahab, Abdelghani .
BOUNDARY VALUE PROBLEMS, 2011,
[7]   THE METHOD OF UPPER AND LOWER SOLUTIONS FOR SECOND ORDER DIFFERENTIAL INCLUSIONS WITH INTEGRAL BOUNDARY CONDITIONS [J].
Benchohra, Mouffak ;
Hamani, Samira ;
Nieto, Juan J. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (01) :13-26
[8]   A finite difference method for the singularly perturbed problem with nonlocal boundary condition [J].
Cakir, M ;
Amiraliyev, GM .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 160 (02) :539-549
[9]  
Doolan E.P., 1980, UNIFORM NUMERICAL ME
[10]   Solving the forced Duffing equation with integral boundary conditions in the reproducing kernel space [J].
Du, Juan ;
Cui, Minggen .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (09) :2088-2100