Functional neural stem cell isolation from brains of adult mutant SOD1 (SOD1G93A) transgenic amyotrophic lateral sclerosis (ALS) mice

被引:8
|
作者
Lee, Jae Chul [1 ]
Jin, Younggeon [2 ,3 ]
Jin, Juyoun [2 ,3 ]
Kang, Bong Gu [2 ,3 ]
Nam, Do-Hyun [2 ,3 ]
Joo, Kyeung Min [1 ]
Cha, Choong Ik [1 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Anat, Seoul 110799, South Korea
[2] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Neurosurg, Seoul, South Korea
[3] Sungkyunkwan Univ, Sch Med, Samsung Biomed Res Inst, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Amyotrophic lateral sclerosis; In vitro expansion; Mutant SOD1 transgenic mouse; Neural stem cell; Hippocampus; Primary culture; SUPEROXIDE-DISMUTASE; MOTOR-NEURONS; DISEASE; NEUROGENESIS; DEGENERATION; MODEL; PROLIFERATION; PROGRESSION; MICROGLIA; SURVIVAL;
D O I
10.1179/016164110X12807570509899
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objectives: The aim of present study is to investigate more functional neural stem cells (NSCs) could be isolated from brains with amyotrophic lateral sclerosis (ALS) and expanded in vitro, based on previous reports demonstrating de novo neurogenesis is enhanced to replace degenerating neural tissue. Methods: Thirteen-or eighteen-week-old mutant human Cu/Zn superoxide dismutase (SOD1(G93A)) transgenic ALS and wild-type SOD1 transgenic control mice were utilized. Changes in numbers of NSCs in the dentate gyrus were analyzed by immunohistochemistry against nestin and CD133. NSCs were primarily cultured from hippocampus of ALS or control mice. Expression of NSC markers, in vitro expansion capacity, and differentiating potential were compared. Results: Hippocampus of 13-week-old pre-symptomatic ALS mice harbor more cells that can be propagated for more than 12 passages in vitro, compared with same age control mice. Primarily-cultured cells formed neurospheres in the NSC culture medium, expressed NSC markers, and differentiated into cells with differentiated neural cell characteristics in the differentiation condition confirming that they are NSCs. In contrast, long-term expansible NSCs could not be derived from brains of 18-week-old symptomatic ALS mice with the same experimental techniques, although they had comparable nestin-immunoreactive cells in the dentate gyrus. Discussion: These results would suggest that increased neuroregeneration in early phase of ALS could be translated to regenerative approaches; however, long-term exposure to ALS microenvironments could abolish functional capacities of NSCs.
引用
收藏
页码:33 / 37
页数:5
相关论文
共 50 条
  • [11] Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues
    Watanabe, M
    Dykes-Hoberg, M
    Culotta, VC
    Price, DL
    Wong, PC
    Rothstein, JD
    NEUROBIOLOGY OF DISEASE, 2001, 8 (06) : 933 - 941
  • [12] Herbal medicines for SOD1G93A mice of amyotrophic lateral sclerosis: preclinical evidence and possible immunologic mechanism
    Yang, Jiang-Li
    Wu, Jing-Ying
    Liu, Jing-Jing
    Zheng, Guo-Qing
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [13] Delayed Disease Onset and Extended Survival in the SOD1G93A Rat Model of Amyotrophic Lateral Sclerosis after Suppression of Mutant SOD1 in the Motor Cortex
    Thomsen, Gretchen M.
    Gowing, Genevieve
    Latter, Jessica
    Chen, Maximus
    Vit, Jean-Philippe
    Staggenborg, Kevin
    Avalos, Pablo
    Alkaslasi, Mor
    Ferraiuolo, Laura
    Likhite, Shibi
    Kaspar, Brian K.
    Svendsen, Clive N.
    JOURNAL OF NEUROSCIENCE, 2014, 34 (47) : 15587 - 15600
  • [14] Calpastatin reduces toxicity of SOD1G93A in a culture model of amyotrophic lateral sclerosis
    Tradewell, Miranda L.
    Durham, Heather D.
    NEUROREPORT, 2010, 21 (15) : 976 - 979
  • [15] EXCITABILITY PROPERTIES OF MOUSE MOTOR AXONS IN THE MUTANT SOD1G93A MODEL OF AMYOTROPHIC LATERAL SCLEROSIS
    Boerio, Delphine
    Kalmar, Bernadett
    Greensmith, Linda
    Bostock, Hugh
    MUSCLE & NERVE, 2010, 41 (06) : 774 - 784
  • [16] Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis
    Tan, Wenzhi
    Pasinelli, Piera
    Trotti, Davide
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2014, 1842 (08): : 1295 - 1301
  • [17] CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations
    Jaarsma D.
    Rognoni F.
    Van Duijn W.
    Verspaget H.W.
    Haasdijk E.D.
    Holstege J.C.
    Acta Neuropathologica, 2001, 102 (4) : 293 - 305
  • [18] CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations
    Jaarsma, D
    Rognoni, F
    van Duijn, W
    Verspaget, HW
    Haasdijk, ED
    Holstege, JC
    ACTA NEUROPATHOLOGICA, 2001, 102 (04) : 293 - 305
  • [19] Protective effects of Withania somnifera extract in SOD1G93A mouse model of amyotrophic lateral sclerosis
    Dutta, Kallol
    Patel, Priyanka
    Julien, Jean-Pierre
    EXPERIMENTAL NEUROLOGY, 2018, 309 : 193 - 204
  • [20] Epothilone D accelerates disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    Clark, J. A.
    Blizzard, C. A.
    Breslin, M. C.
    Yeaman, E. J.
    Lee, K. M.
    Chuckowree, J. A.
    Dickson, T. C.
    NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2018, 44 (06) : 590 - 605