On blow-up of solutions to the two-component π-Camassa-Holm system

被引:2
作者
Ma, Caochuan [1 ]
Alsaedi, Ahmed [2 ]
Hayat, Tasawar [2 ,3 ,4 ]
Zhou, Yong [2 ,5 ]
机构
[1] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741001, Peoples R China
[2] King Abdulaziz Univ, Fac Sci, Res Grp, NAAM, Jeddah 21589, Saudi Arabia
[3] Quaid I Azam Univ, Dept Math, Islamabad 45320, Pakistan
[4] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
[5] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
关键词
pi-Camassa-Holm system; Geodesic flow; Blow-up; Blow-up rate; SHALLOW-WATER EQUATION; WAVE BREAKING; SOLITONS; GEOMETRY;
D O I
10.1016/j.jmaa.2015.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate Cauchy problem of the two-component pi-Camassa-Holm system which arises from geodesic flow on a semidirect product Lie group of the circle. The precise blow-up scenarios of strong solutions are derived for the system. Then, several criteria to guarantee blow-up of strong solutions are presented. Finally, the exact blow-up rate is determined. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1026 / 1039
页数:14
相关论文
共 22 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]   A two-component generalization of the Camassa-Holm equation and its solutions [J].
Chen, M ;
Liu, SQ ;
Zhang, YJ .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 75 (01) :1-15
[3]   On the cauchy problem for the periodic Camassa-Holm equation [J].
Constantin, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 141 (02) :218-235
[4]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[5]   On the blow-up of solutions of a periodic shallow water equation [J].
Constantin, A .
JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (03) :391-399
[6]   On an integrable two-component Camassa-Holm shallow water system [J].
Constantin, Adrian ;
Ivanov, Rossen I. .
PHYSICS LETTERS A, 2008, 372 (48) :7129-7132
[7]   The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations [J].
Escher, J. ;
Kohlmann, M. ;
Lenells, J. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) :436-452
[8]  
Escher J, 2007, DISCRETE CONT DYN-A, V19, P493
[9]   Wave breaking for a modified two-component Camassa-Holm system [J].
Guo, Zhengguang ;
Zhu, Mingxuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2759-2770
[10]   On Solutions to a Two-Component Generalized Camassa-Holm Equation [J].
Guo, Zhengguang ;
Zhou, Yong .
STUDIES IN APPLIED MATHEMATICS, 2010, 124 (03) :307-322