Spectrum of Hyperplane Arrangements in Four Variables

被引:2
作者
Yoon, Youngho [1 ]
机构
[1] Inst Basic Sci IBS, Ctr Geometry & Phys, Pohang, Gyeongbuk, South Korea
关键词
Hodge spectrum; Hyperplane arrangement; Singularity; Spectrum formula; Primary; 14B05; Secondary; 32S22; MULTIPLIER IDEALS;
D O I
10.1080/00927872.2014.903405
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of the most important invariants in singularity theory is the Hodge spectrum. Calculating the Hodge spectrum is a difficult task and formulas exist for only a few cases. In this article, the main result is the formula for reduced hyperplane arrangements in four variables.
引用
收藏
页码:2585 / 2600
页数:16
相关论文
共 14 条
[1]  
[Anonymous], 1992, DMV Sem.
[2]   Multiplier ideals, V-filtration, and spectrum [J].
Budur, N ;
Saito, M .
JOURNAL OF ALGEBRAIC GEOMETRY, 2005, 14 (02) :269-282
[3]   On Hodge spectrum and multiplier ideals [J].
Budur, N .
MATHEMATISCHE ANNALEN, 2003, 327 (02) :257-270
[4]  
Budur N, ARXIV08093443V2
[5]   The Monodromy Conjecture for hyperplane arrangements [J].
Budur, Nero ;
Mustata, Mircea ;
Teitler, Zach .
GEOMETRIAE DEDICATA, 2011, 153 (01) :131-137
[6]   JUMPING NUMBERS OF HYPERPLANE ARRANGEMENTS [J].
Budur, Nero .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (03) :1122-1136
[7]   Jumping coefficients and spectrum of a hyperplane arrangement [J].
Budur, Nero ;
Saito, Morihiko .
MATHEMATISCHE ANNALEN, 2010, 347 (03) :545-579
[8]  
DE CONCINI C., 1995, SELECTA MATH, V1, P459, DOI DOI 10.1007/BF01589496
[9]   TATE PROPERTIES, POLYNOMIAL-COUNT VARIETIES, AND MONODROMY OF HYPERPLANE ARRANGEMENTS [J].
Dimca, Alexandru .
NAGOYA MATHEMATICAL JOURNAL, 2012, 206 :75-97
[10]  
Fulton W., 1998, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, V2nd