Indirect Adaptive MPC for Discrete-Time LTI Systems With Parametric Uncertainties

被引:22
作者
Dhar, Abhishek [1 ]
Bhasin, Shubhendu [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Elect Engn, New Delhi 110016, India
关键词
Uncertainty; Linear systems; Parameter estimation; Adaptation models; Uncertain systems; Closed loop systems; Stability analysis; Adaptive control; constrained system; discrete-time system; model predictive control (MPC); uncertain linear time-invariant (LTI) system; MODEL-PREDICTIVE CONTROL;
D O I
10.1109/TAC.2021.3050446
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article addresses the problem of controlling discrete-time linear time-invariant systems with parametric uncertainties in the presence of hard state and input constraints. A suitably designed gradient-descent-based indirect adaptive controller, used to handle parametric uncertainties, is combined with a model predictive control (MPC) algorithm, which guarantees constraint satisfaction. An estimated model of the actual uncertain plant is used for predictions of the future states. The parameters of the estimated model are updated using a gradient-descent-based adaptive update law. The errors arising due to the model mismatch between the estimated plant model and the actual uncertain plant are accounted for using a constraint tightening method in the MPC algorithm. The proposed adaptive MPC strategy is proved to be recursively feasible and the closed-loop system is proved to be bounded at all instants and asymptotically converging to the origin.
引用
收藏
页码:5498 / 5505
页数:8
相关论文
共 14 条
[1]   Tube-based model predictive control for linear parameter-varying systems with bounded rate of parameter variation [J].
Abbas, Hossam Seddik ;
Maennel, Georg ;
Hoffmann, Christian Herzogne ;
Rostalski, Philipp .
AUTOMATICA, 2019, 107 :21-28
[2]   On the Computation of λ-Contractive Sets for Linear Constrained Systems [J].
Darup, Moritz Schulze ;
Cannon, Mark .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (03) :1498-1504
[3]  
Dhar A, 2018, 2018 EUROPEAN CONTROL CONFERENCE (ECC), P319, DOI 10.23919/ECC.2018.8550217
[4]  
Di Cairano S, 2016, P AMER CONTR CONF, P3570, DOI 10.1109/ACC.2016.7525467
[5]  
Fan DL, 2016, P AMER CONTR CONF, P2948, DOI 10.1109/ACC.2016.7525367
[6]   Adaptive model predictive control for a class of constrained linear systems based on the comparison model [J].
Fukushima, Hiroaki ;
Kim, Tae-Hyoung ;
Sugie, Toshiharu .
AUTOMATICA, 2007, 43 (02) :301-308
[7]  
Ioannou P, 2006, ADV DES CONTROL, P1, DOI 10.1137/1.9780898718652
[8]   Robust constrained model predictive control using linear matrix inequalities [J].
Kothare, MV ;
Balakrishnan, V ;
Morari, M .
AUTOMATICA, 1996, 32 (10) :1361-1379
[9]  
Kouramas KI, 2005, IEEE DECIS CONTR P, P2296
[10]   Robust model predictive control using tubes [J].
Langson, W ;
Chryssochoos, I ;
Rakovic, SV ;
Mayne, DQ .
AUTOMATICA, 2004, 40 (01) :125-133