A Framework of Structural Damage Detection for Civil Structures Using Fast Fourier Transform and Deep Convolutional Neural Networks

被引:43
作者
He, Yingying [1 ]
Chen, Hongyang [1 ]
Liu, Die [2 ]
Zhang, Likai [3 ]
机构
[1] Chongqing Coll Humanities Sci & Technol, Sch Comp Engn, Chongqing 401524, Peoples R China
[2] Chongqing Coll Humanities Sci & Technol, Sch Business, Chongqing 401524, Peoples R China
[3] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 19期
关键词
structural health monitoring; FFT-DCNN; structural damage detection; deep learning; civil structures; SUPPORT-VECTOR-MACHINE; IDENTIFICATION; METHODOLOGY;
D O I
10.3390/app11199345
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the field of structural health monitoring (SHM), vibration-based structural damage detection is an important technology to ensure the safety of civil structures. By taking advantage of deep learning, this study introduces a data-driven structural damage detection method that combines deep convolutional neural networks (DCNN) and fast Fourier transform (FFT). In this method, the structural vibration data are fed into FFT method to acquire frequency information reflecting structural conditions. Then, DCNN is utilized to automatically extract damage features from frequency information to identify structural damage conditions. To verify the effectiveness of the proposed method, FFT-DCNN is carried out on a three-story building structure and ASCE benchmark. The experimental result shows that the proposed method achieves high accuracy, compared with classic machine-learning algorithms such as support vector machine (SVM), random forest (RF), K-Nearest Neighbor (KNN), and eXtreme Gradient boosting (xgboost).
引用
收藏
页数:22
相关论文
共 37 条
[1]   1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data [J].
Abdeljaber, Osama ;
Avci, Onur ;
Kiranyaz, Mustafa Serkan ;
Boashash, Boualem ;
Sodano, Henry ;
Inman, Daniel J. .
NEUROCOMPUTING, 2018, 275 :1308-1317
[2]   Artifacts of different dimension reduction methods on hybrid CNN feature hierarchy for Hyperspectral Image Classification [J].
Ahmad, Muhammad ;
Shabbir, Sidrah ;
Raza, Rana Aamir ;
Mazzara, Manuel ;
Distefano, Salvatore ;
Khan, Adil Mehmood .
OPTIK, 2021, 246
[3]  
Amini Tehrani H., 2017, SCI IRAN, DOI [10.24200/sci.2017.20019, DOI 10.24200/SCI.2017.20019]
[4]   A perspective on the aerodynamics and aeroelasticity of tapering: Partial reattachment [J].
Chen, Zengshun ;
Fu, Xianzhi ;
Xu, Yemeng ;
Li, Cruz Y. ;
Kim, Bubryur ;
Tse, K. T. .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2021, 212 (212)
[5]   Measurement of unsteady aerodynamic force on a galloping prism in a turbulent flow: A hybrid aeroelastic-pressure balance [J].
Chen, Zengshun ;
Tse, K. T. ;
Kwok, K. C. S. ;
Kareem, Ahsan ;
Kim, Bubryur .
JOURNAL OF FLUIDS AND STRUCTURES, 2021, 102
[6]  
Dyke S.J., 2003, P 16 ASCE ENG MECH C
[7]  
Fan N., 2004, COMP WAVELETAND FFT, P127
[8]   Ensemble of Deep Convolutional Neural Networks for Automatic Pavement Crack Detection and Measurement [J].
Fan, Zhun ;
Li, Chong ;
Chen, Ying ;
Di Mascio, Paola ;
Chen, Xiaopeng ;
Zhu, Guijie ;
Loprencipe, Giuseppe .
COATINGS, 2020, 10 (02)
[9]  
Gopinathan Ssubramani, 2015, Int. J. Electr. Comput. Eng, V5, P2088, DOI DOI 10.11591/IJECE.V5I5.PP1018-1026
[10]   Data-Driven Support Vector Machine with Optimization Techniques for Structural Health Monitoring and Damage Detection [J].
Gui, Guoqing ;
Pan, Hong ;
Lin, Zhibin ;
Li, Yonghua ;
Yuan, Zhijun .
KSCE JOURNAL OF CIVIL ENGINEERING, 2017, 21 (02) :523-534