Simulation and experimental verification of ambient neutron doses in a pencil beam scanning proton therapy room as a function of treatment plan parameters

被引:7
|
作者
Van Hoey, Olivier [1 ]
Stolarczyk, Liliana [2 ,3 ,4 ]
Lillhoek, Jan [5 ]
Eliasson, Linda [6 ]
Mojzeszek, Natalia [3 ]
Liszka, Malgorzata [3 ,4 ]
Alkhiat, Ali [4 ,7 ]
Mares, Vladimir [8 ]
Trompier, Francois [9 ]
Trinkl, Sebastian [8 ,10 ]
Martinez-Rovira, Immaculada [11 ]
Romero-Exposito, Maite [11 ]
Domingo, Carles [11 ]
Ploc, Ondrej [12 ]
Harrison, Roger [13 ]
Olko, Pawel [3 ]
机构
[1] Belgian Nucl Res Ctr SCK CEN, Inst Environm, Hlth & Safety EHS, Mol, Belgium
[2] Aarhus Univ Hosp AUH, Danish Ctr Particle Therapy, Aarhus, Denmark
[3] Inst Nucl Phys, Polish Acad Sci, IFJ PAN, Krakow, Poland
[4] Skandion Clin, Uppsala, Sweden
[5] Swedish Radiat Safety Author, Solna, Sweden
[6] Royal Inst Technol KTH, Dept Phys, Stockholm, Sweden
[7] Karolinska Univ Hosp, Dept Med Radiat Phys & Nucl Med, Stockholm, Sweden
[8] Helmholtz Zentrum Munchen, Inst Radiat Med, Neuherberg, Germany
[9] Inst Radioprotect & Surete Nucl IRSN, PSE Sante, Fontenay aux roses, France
[10] Fed Off Radiat Protect, Neuherberg, Germany
[11] Univ Autonoma Barcelona, Dept Fis, Bellaterra, Spain
[12] Czech Acad Sci CAS, Dept Radiat Dosimetry, Nucl Phys Inst, Prague, Czech Republic
[13] Univ Newcastle Tyne, Fac Med Sci, Newcastle Upon Tyne, England
来源
FRONTIERS IN ONCOLOGY | 2022年 / 12卷
关键词
Proton therapy; Pencil beam scanned proton therapy; Neutron doses; Monte Carlo simulations; Out-of-field neutron doses in radiation therapy; Neutron measurements; FIELD; SPECTROMETRY; RADIATION; DOSIMETRY; COUNTERS;
D O I
10.3389/fonc.2022.903537
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Out-of-field patient doses in proton therapy are dominated by neutrons. Currently, they are not taken into account by treatment planning systems. There is an increasing need to include out-of-field doses in the dose calculation, especially when treating children, pregnant patients, and patients with implants. In response to this demand, this work presents the first steps towards a tool for the prediction of out-of-field neutron doses in pencil beam scanning proton therapy facilities. As a first step, a general Monte Carlo radiation transport model for simulation of out-of-field neutron doses was set up and successfully verified by comparison of simulated and measured ambient neutron dose equivalent and neutron fluence energy spectra around a solid water phantom irradiated with a variation of different treatment plan parameters. Simulations with the verified model enabled a detailed study of the variation of the neutron ambient dose equivalent with field size, range, modulation width, use of a range shifter, and position inside the treatment room. For future work, it is planned to use this verified model to simulate out-of-field neutron doses inside the phantom and to verify the simulation results by comparison with previous in-phantom measurement campaigns. Eventually, these verified simulations will be used to build a library and a corresponding tool to allow assessment of out-of-field neutron doses at pencil beam scanning proton therapy facilities.
引用
收藏
页数:22
相关论文
共 39 条
  • [1] Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system
    Mojzeszek, N.
    Farah, J.
    Klodowska, M.
    Ploc, O.
    Stolarczyk, L.
    Waligorski, M. P. R.
    Olko, P.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 34 : 80 - 84
  • [2] Secondary neutron dose contribution from pencil beam scanning, scattered and spatially fractionated proton therapy
    Leite, A. M. M.
    Ronga, M. G.
    Giorgi, M.
    Ristic, Y.
    Perrot, Y.
    Trompier, F.
    Prezado, Y.
    Crehange, G.
    De Marzi, L.
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (22)
  • [3] Investigating beam matching for multi-room pencil beam scanning proton therapy
    Suresh Rana
    Jaafar Bennouna
    Physical and Engineering Sciences in Medicine, 2020, 43 : 1241 - 1251
  • [4] Investigating beam matching for multi-room pencil beam scanning proton therapy
    Rana, Suresh
    Bennouna, Jaafar
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (04) : 1241 - 1251
  • [5] Simulation and experimental benchmarking of a proton pencil beam scanning nozzle model for development of MR-integrated proton therapy
    Oborn, Bradley M.
    Semioshkina, Ekaterina
    van der Kraaij, Erik
    Hoffmann, Aswin L.
    MEDICAL PHYSICS, 2024, 51 (09) : 6196 - 6205
  • [6] Neutron Radiation Dose Measurements in a Scanning Proton Therapy Room: Can Parents Remain Near Their Children During Treatment?
    Mares, Vladimir
    Farah, Jad
    De Saint-Hubert, Marijke
    Domanski, Szymon
    Domingo, Carles
    Dommert, Martin
    Klodowska, Magdalena
    Krzempek, Katarzyna
    Kuc, Michal
    Martinez-Rovira, Immaculada
    Michas, Edyta
    Mojzeszek, Natalia
    Murawski, Lukasz
    Ploc, Ondrej
    Romero-Exposito, Maite
    Tisi, Marco
    Trompier, Francois
    Van Hoey, Olivier
    Van Ryckeghem, Laurent
    Wielunski, Marek
    Harrison, Roger M.
    Stolarczyk, Liliana
    Olko, Pawel
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [7] Experimental and Monte Carlo characterization of a dynamic collimation system prototype for pencil beam scanning proton therapy
    Smith, Blake R.
    Pankuch, Mark
    Hyer, Daniel E.
    Culberson, Wesley S.
    MEDICAL PHYSICS, 2020, 47 (10) : 5343 - 5356
  • [8] Robustness evaluation of pencil beam scanning proton therapy treatment planning: A systematic review
    Sterpin, E.
    Widesott, L.
    Poels, K.
    Hoogeman, M.
    Korevaar, E. W.
    Lowe, M.
    Molinelli, S.
    Fracchiolla, F.
    RADIOTHERAPY AND ONCOLOGY, 2024, 197
  • [9] Dosimetry calculations of gastric cancer treatment during pencil beam scanning proton therapy
    Sadrzadeh, S.
    Tajik, M.
    INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2024, 22 (04): : 823 - 829
  • [10] Implication of spot position error on plan quality and patient safety in pencil-beam-scanning proton therapy
    Yu, Juan
    Beltran, Chris J.
    Herman, Michael G.
    MEDICAL PHYSICS, 2014, 41 (08) : 96 - 103