REDUCIBILITY OF SKEW-PRODUCT SYSTEMS WITH MULTIDIMENSIONAL BRJUNO BASE FLOWS

被引:4
作者
Kocic, Sasa [1 ]
机构
[1] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
Quasi-periodic; skew-product; Schrodinger; cocycles; reducibility; renormalization; RENORMALIZATION; COCYCLES; DENSITY;
D O I
10.3934/dcds.2011.29.261
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a renormalization method that applies to the problem of the local reducibility of analytic skew-product flows on T-d x SL(2, R). We apply the method to give a proof of a reducibility theorem for these flows with Brjuno base frequency vectors.
引用
收藏
页码:261 / 283
页数:23
相关论文
共 31 条
[1]   On the density of states of the one dimensional quasi-periodic Schrodinger operators [J].
Amor, Sana Hadj .
COMPTES RENDUS MATHEMATIQUE, 2006, 343 (06) :423-426
[2]  
Avila A, 2010, J EUR MATH SOC, V12, P93
[3]   Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles [J].
Avila, Artur ;
Krikorian, Raphael .
ANNALS OF MATHEMATICS, 2006, 164 (03) :911-940
[4]  
BOGOLJUBOV NN, 1976, METHODS ACCELARATED
[5]   On the spectrum of lattice Schrodinger operators with deterministic potential (II) [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 88 (1) :221-254
[6]  
Brjuno A.D., 1972, Tr. Mosk. Mat. Obsc., V26, P199
[7]  
Brjuno AD., 1971, T MMO, V25, P119
[8]   Local conjugacy classes for analytic torus flows [J].
Dias, Joao Lopes .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (02) :468-489
[9]   A normal form theorem for Brjuno skew systems through renormalization [J].
Dias, Joao Lopes .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 230 (01) :1-23
[10]  
Dinaburg E I., 1975, Funct. Anal. Appl, V9, P8