Generalized Littlewood-Paley characterizations of fractional Sobolev spaces

被引:7
作者
Sato, Shuichi [1 ]
Wang, Fan [2 ]
Yang, Dachun [2 ]
Yuan, Wen [2 ]
机构
[1] Kanazawa Univ, Dept Math, Fac Educ, Kanazawa, Ishikawa 9201192, Japan
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Sobolev space; g-function; Lusin area function; g*(lambda)-function; average; Riesz potential operator; AVERAGES;
D O I
10.1142/S0219199717500778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors characterize the Sobolev spaces W-alpha,W-p(R-n) with alpha is an element of(0, 2] and p is an element of(max{1, 2n/2 alpha+n},infinity) via a generalized Lusin area function and its corresponding Littlewood-Paley g(lambda)*-function. The range p is an element of(max{1, 2n/2 alpha+n},infinity) is also proved to be nearly sharp in the sense that these new characterizations are not true when 2n/2 alpha+n > 1 and p is an element of(1, 2n/2 alpha+n). Moreover, in the endpoint case p = 2n/2 alpha+n, the authors also obtain some weak type estimates. Since these generalized Littlewood-Paley functions are of wide generality, these results provide some new choices for introducing the notions of fractional Sobolev spaces on metric measure spaces.
引用
收藏
页数:48
相关论文
共 50 条
  • [41] Local growth envelopes and optimal embeddings of generalized Sobolev spaces
    Gol'dman, M. L.
    [J]. DOKLADY MATHEMATICS, 2006, 74 (02) : 692 - 695
  • [42] Local growth envelopes and optimal embeddings of generalized Sobolev spaces
    M. L. Gol’dman
    [J]. Doklady Mathematics, 2006, 74 : 692 - 695
  • [43] Continuity of Bilinear Fractional Maximal Commutators with Lipschitz Symbols in Sobolev Spaces
    Jiang, Xixi
    Liu, Feng
    Wen, Yongming
    [J]. FRONTIERS OF MATHEMATICS, 2025,
  • [44] Sobolev Spaces and Trace Theorems for Time-fractional Evolution Equations
    Kim, Doyoon
    Woo, Kwan
    [J]. POTENTIAL ANALYSIS, 2025,
  • [45] The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces
    Peng, Li
    Zhou, Yong
    Ahmad, Bashir
    Alsaedi, Ahmed
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 218 - 228
  • [46] Holomorphic Sobolev spaces, Hermite and special Hermite semigroups and a Paley-Wiener theorem for the windowed Fourier transform
    Radha, R.
    Thangavelu, S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (02) : 564 - 574
  • [47] Generalized anti-wick operators with symbols in distributional Sobolev spaces
    Boggiatto, P
    Cordero, E
    Gröchenig, K
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (04) : 427 - 442
  • [48] Generalized Anti-Wick Operators with Symbols in Distributional Sobolev spaces
    Paolo Boggiatto
    Elena Cordero
    Karlheinz Gröchenig
    [J]. Integral Equations and Operator Theory, 2004, 48 : 427 - 442
  • [49] Geometric Characterizations of Embedding Theorems: For Sobolev, Besov, and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type—via Orthonormal Wavelets
    Yanchang Han
    Yongsheng Han
    Ziyi He
    Ji Li
    Cristina Pereyra
    [J]. The Journal of Geometric Analysis, 2021, 31 : 8947 - 8978
  • [50] WELL-POSEDNESS OF A POROUS MEDIUM FLOW WITH FRACTIONAL PRESSURE IN SOBOLEV SPACES
    Zhou, Xuhuan
    Xiao, Weiliang
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,