Generalized Littlewood-Paley characterizations of fractional Sobolev spaces

被引:7
作者
Sato, Shuichi [1 ]
Wang, Fan [2 ]
Yang, Dachun [2 ]
Yuan, Wen [2 ]
机构
[1] Kanazawa Univ, Dept Math, Fac Educ, Kanazawa, Ishikawa 9201192, Japan
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Sobolev space; g-function; Lusin area function; g*(lambda)-function; average; Riesz potential operator; AVERAGES;
D O I
10.1142/S0219199717500778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors characterize the Sobolev spaces W-alpha,W-p(R-n) with alpha is an element of(0, 2] and p is an element of(max{1, 2n/2 alpha+n},infinity) via a generalized Lusin area function and its corresponding Littlewood-Paley g(lambda)*-function. The range p is an element of(max{1, 2n/2 alpha+n},infinity) is also proved to be nearly sharp in the sense that these new characterizations are not true when 2n/2 alpha+n > 1 and p is an element of(1, 2n/2 alpha+n). Moreover, in the endpoint case p = 2n/2 alpha+n, the authors also obtain some weak type estimates. Since these generalized Littlewood-Paley functions are of wide generality, these results provide some new choices for introducing the notions of fractional Sobolev spaces on metric measure spaces.
引用
收藏
页数:48
相关论文
共 50 条
  • [31] Characterizations of Sobolev spaces associated to operators satisfying off-diagonal estimates on balls
    Zhang, Junqiang
    Chang, Der-Chen
    Yang, Dachun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (08) : 2907 - 2929
  • [32] EMBEDDING CONSTANTS FOR PERIODIC SOBOLEV SPACES OF FRACTIONAL ORDER
    Vaskevich, V. L.
    SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (05) : 806 - 813
  • [33] Embedding constants for periodic Sobolev spaces of fractional order
    V. L. Vaskevich
    Siberian Mathematical Journal, 2008, 49 : 806 - 813
  • [34] New Sobolev spaces via generalized Poincaré inequalities on metric measure spaces
    Yan L.
    Yang D.
    Frontiers of Mathematics in China, 2006, 1 (3) : 480 - 483
  • [35] Fractional order Sobolev classes on infinite-dimensional spaces
    E. V. Nikitin
    Doklady Mathematics, 2013, 88 : 518 - 523
  • [36] Fractional order Sobolev classes on infinite-dimensional spaces
    Nikitin, E. V.
    DOKLADY MATHEMATICS, 2013, 88 (02) : 518 - 523
  • [37] SOME RESULTS FOR THE FRACTIONAL INTEGRAL OPERATOR DEFINED ON THE SOBOLEV SPACES
    Gurdal, Mehmet
    Nabiev, Anar Adiloglu
    Ayyildiz, Meral
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (1-2): : 173 - 184
  • [38] Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages
    Xie, Guangheng
    Yang, Dachun
    Yuan, Wen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (03): : 681 - 699
  • [39] Fractional Hajlasz-Morrey-Sobolev spaces on quasi-metric measure spaces
    Yuan, Wen
    Lu, Yufeng
    Yang, Dachun
    STUDIA MATHEMATICA, 2015, 226 (02) : 95 - 122
  • [40] Sobolev-type spaces from generalized Poincare inequalities
    Heikkinen, Tom
    Koskela, Pekka
    Tuominen, Hem
    STUDIA MATHEMATICA, 2007, 181 (01) : 1 - 16