Generalized Littlewood-Paley characterizations of fractional Sobolev spaces

被引:7
|
作者
Sato, Shuichi [1 ]
Wang, Fan [2 ]
Yang, Dachun [2 ]
Yuan, Wen [2 ]
机构
[1] Kanazawa Univ, Dept Math, Fac Educ, Kanazawa, Ishikawa 9201192, Japan
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
Sobolev space; g-function; Lusin area function; g*(lambda)-function; average; Riesz potential operator; AVERAGES;
D O I
10.1142/S0219199717500778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors characterize the Sobolev spaces W-alpha,W-p(R-n) with alpha is an element of(0, 2] and p is an element of(max{1, 2n/2 alpha+n},infinity) via a generalized Lusin area function and its corresponding Littlewood-Paley g(lambda)*-function. The range p is an element of(max{1, 2n/2 alpha+n},infinity) is also proved to be nearly sharp in the sense that these new characterizations are not true when 2n/2 alpha+n > 1 and p is an element of(1, 2n/2 alpha+n). Moreover, in the endpoint case p = 2n/2 alpha+n, the authors also obtain some weak type estimates. Since these generalized Littlewood-Paley functions are of wide generality, these results provide some new choices for introducing the notions of fractional Sobolev spaces on metric measure spaces.
引用
收藏
页数:48
相关论文
共 50 条
  • [21] LITTLEWOOD-PALEY THEORY ON GAUSSIAN SPACES
    POTTHOFF, J
    NAGOYA MATHEMATICAL JOURNAL, 1988, 109 : 47 - 61
  • [22] LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC WEAK MUSIELAK-ORLICZ HARDY SPACES
    Li, Bo
    Sun, Ruirui
    Liao, Minfeng
    Li, Baode
    NAGOYA MATHEMATICAL JOURNAL, 2020, 237 : 39 - 78
  • [23] Littlewood-Paley Function and Molecular Characterizations of Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 71 - 107
  • [24] LITTLEWOOD-PALEY THEOREM IN THE Ba SPACES
    马继钢
    ChineseScienceBulletin, 1989, (18) : 1507 - 1513
  • [25] BOUNDEDNESS OF LITTLEWOOD-PALEY OPERATORS IN GENERALIZED ORLICZ-CAMPANATO SPACES
    Zhang, Songyan
    Tao, Xiangxing
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (04) : 1355 - 1375
  • [26] LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY SPACES OF MUSIELAK-ORLICZ TYPE
    Li, Baode
    Fan, Xingya
    Yang, Dachun
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 279 - 314
  • [27] Hardy-Littlewood-Sobolev-Type Inequality for the Fractional Littlewood-Paley g-Function in Jacobi Analysis
    Ben Salem, Nejib
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 4439 - 4452
  • [28] Littlewood-Paley theory for Morrey spaces and their preduals
    Izumi, Takashi
    Sawano, Yoshihiro
    Tanaka, Hitoshi
    REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (02): : 411 - 447
  • [29] Characterizations of the multiple Littlewood-Paley operators on product domains
    Liu, Feng
    Xue, Qingying
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2018, 92 (3-4): : 419 - 439
  • [30] A LITTLEWOOD-PALEY TYPE THEOREM FOR BERGMAN SPACES
    陈泽乾
    欧阳威
    ActaMathematicaScientia, 2013, 33 (01) : 150 - 154