Generalized Littlewood-Paley characterizations of fractional Sobolev spaces

被引:7
|
作者
Sato, Shuichi [1 ]
Wang, Fan [2 ]
Yang, Dachun [2 ]
Yuan, Wen [2 ]
机构
[1] Kanazawa Univ, Dept Math, Fac Educ, Kanazawa, Ishikawa 9201192, Japan
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
Sobolev space; g-function; Lusin area function; g*(lambda)-function; average; Riesz potential operator; AVERAGES;
D O I
10.1142/S0219199717500778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors characterize the Sobolev spaces W-alpha,W-p(R-n) with alpha is an element of(0, 2] and p is an element of(max{1, 2n/2 alpha+n},infinity) via a generalized Lusin area function and its corresponding Littlewood-Paley g(lambda)*-function. The range p is an element of(max{1, 2n/2 alpha+n},infinity) is also proved to be nearly sharp in the sense that these new characterizations are not true when 2n/2 alpha+n > 1 and p is an element of(1, 2n/2 alpha+n). Moreover, in the endpoint case p = 2n/2 alpha+n, the authors also obtain some weak type estimates. Since these generalized Littlewood-Paley functions are of wide generality, these results provide some new choices for introducing the notions of fractional Sobolev spaces on metric measure spaces.
引用
收藏
页数:48
相关论文
共 50 条
  • [1] Littlewood-Paley characterizations of fractional Sobolev spaces via averages on balls
    Dai, Feng
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (06) : 1135 - 1163
  • [2] Littlewood-Paley functions and Sobolev spaces
    Chen, Jiecheng
    Fan, Dashan
    Zhao, Fayou
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 184 : 273 - 297
  • [3] Littlewood-Paley characterizations of higher-order Sobolev spaces via averages on balls
    He, Ziyi
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (2-3) : 284 - 325
  • [4] Littlewood-Paley Characterizations of Second-Order Sobolev Spaces via Averages on Balls
    He, Ziyi
    Yang, Dachun
    Yuan, Wen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (01): : 104 - 118
  • [5] Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type
    Han, Yongsheng
    Mueller, Detlef
    Yang, Dachun
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) : 1505 - 1537
  • [6] Inclusion Relations Among Fractional Orlicz-Sobolev Spaces and a Littlewood-Paley Characterization
    Breit, Dominic
    Cianchi, Andrea
    POTENTIAL ANALYSIS, 2025, 62 (02) : 271 - 302
  • [7] LITTLEWOOD-PALEY SPACES
    Ho, Kwok-Pun
    MATHEMATICA SCANDINAVICA, 2011, 108 (01) : 77 - 102
  • [8] Generalized Littlewood-Paley functions on product spaces
    AL-QASSEM, Hussain
    CHENG, Leslie
    PAN, Yibiao
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 319 - 345
  • [9] LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (01) : 1 - 33
  • [10] Littlewood-Paley inequalities for fractional derivative on Bergman spaces
    Pelaez, Jose Angel
    De La Rosa, Elena
    ANNALES FENNICI MATHEMATICI, 2022, 47 (02): : 1109 - 1130