Mitigation Negative Effects of Salt Stress on Common Bean (Phaseolus vulgaris) Using Seaweed Extracts

被引:0
|
作者
Elshalakany, Walaa A. [1 ]
Abd-Elkader, Ali M. [2 ,3 ]
Salama, Mohamed [4 ]
Oraby, Shimaa Y. [5 ]
机构
[1] Ain Shams Univ, Fac Agr, Agr Biochem Dept, Cairo, Egypt
[2] Ain Shams Univ, Fac Agr, Agr Bot Dept, Cairo, Egypt
[3] Huazhong Agr Univ, Coll Resources & Environm, Wuhan, Hubei, Peoples R China
[4] Natl Res Ctr, Dairy Dept, 33th El Bohouth St, Dokki 12622, Giza, Egypt
[5] Ain Shams Univ, Fac Agr, Soil Sci Dept, Cairo, Egypt
来源
EGYPTIAN JOURNAL OF CHEMISTRY | 2022年 / 66卷 / 06期
关键词
Phaseolus vulgaris; Saline stress; Seaweed extract; Red algae; Biochemical traits; Enzymes activity; SALINITY TOLERANCE; ANTIOXIDANT ACTIVITIES; HYDROGEN-PEROXIDE; WATER RELATIONS; L; GROWTH; BIOSTIMULANTS; CULTIVARS; ENZYMES; YIELD;
D O I
10.21608/EJCHEM.2022.143061.6254
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The abiotic stress can significantly affect plant growth and its biochemical traits, consequently the economic yield of crops. Therefore, our study aimed to investigate the effects of seaweed extract application (i.e. 0, 100 and 300 ppm red algae extracts) on growth, biochemical and tolerance traits of salt-sensitive Phaseolus vulgaris seedling grown under saline stress conditions (50 and 100 mM NaCl). Plant growth traits and chlorophyll contents were significantly decreased when plants were grown with saline treatments. However, seaweed treatments either 100 ppm or 300 ppm mitigated the salt stress and significantly improved the total phenolic, proline, pigments contents and enzymes activity. Saline stress resulted in an increase in the electrolyte leakage (EL), while the seaweed extraction treatments minimized EL and malondialdehyde (MDA) contents. In addition, proline content and antioxidant enzymes activity were significantly increased in the response to salt stress treatments. Compared to the 300 ppm of the algae extract, it was clear that the red algae extract at 100 ppm was the optimal treatment in terms of improving plant growth and biochemical traits when plants grown under the highest level of saline stress (100 mM NaCl). In conclusion, treating seeds of crops with the algae extracts can significantly mitigate the harmful effects of saline stress.
引用
收藏
页码:49 / 60
页数:12
相关论文
共 50 条
  • [1] Alleviation of Salt Stress in Common Bean (Phaseolus vulgaris) by Exogenous Abscisic Acid Supply
    Mariam Khadri
    Noel A. Tejera
    Carmen Lluch
    Journal of Plant Growth Regulation, 2006, 25 : 110 - 119
  • [2] Nodulation and growth of nodules in the common bean (Phaseolus vulgaris) under salt stress.
    Saadallah, K
    Drevon, JJ
    Abdelly, C
    AGRONOMIE, 2001, 21 (6-7): : 627 - 634
  • [3] Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply
    Khadri, Mariam
    Tejera, Noel A.
    Lluch, Carmen
    JOURNAL OF PLANT GROWTH REGULATION, 2006, 25 (02) : 110 - 119
  • [4] Differential Expression of Genes for Tolerance to Salt Stress in Common Bean (Phaseolus vulgaris L.)
    Hernandez-Lucero, Eloisa
    Araceli Rodriguez-Hernandez, Aida
    Azucena Ortega-Amaro, Maria
    Francisco Jimenez-Bremont, Juan
    PLANT MOLECULAR BIOLOGY REPORTER, 2014, 32 (02) : 318 - 327
  • [5] Molecular mechanisms of flavonoid accumulation in germinating common bean (Phaseolus vulgaris) under salt stress
    Zhang, Qi
    Zheng, Guangyue
    Wang, Qi
    Zhu, Jixing
    Zhou, Zhiheng
    Zhou, Wenshuo
    Xu, Junjie
    Sun, Haoyue
    Zhong, Jingwen
    Gu, Yanhua
    Yin, Zhengong
    Du, Yan-li
    Du, Ji-dao
    FRONTIERS IN NUTRITION, 2022, 9
  • [6] Ammonium assimilation and ureide metabolism in common bean (Phaseolus vulgaris) nodules under salt stress
    Khadri, M
    Pliego, L
    Soussi, M
    Lluch, C
    Ocaña, A
    AGRONOMIE, 2001, 21 (6-7): : 635 - 643
  • [7] Impact of drought and salt stress on galactinol and raffinose family oligosaccharides in common bean (Phaseolus vulgaris)
    de Koning, Ramon
    Wils, Gertjan E.
    Kiekens, Raphael
    De Vuyst, Luc
    Angenon, Geert
    AOB PLANTS, 2023, 15 (04):
  • [8] Differential Expression of Genes for Tolerance to Salt Stress in Common Bean (Phaseolus vulgaris L.)
    Eloísa Hernández-Lucero
    Aída Araceli Rodríguez-Hernández
    María Azucena Ortega-Amaro
    Juan Francisco Jiménez-Bremont
    Plant Molecular Biology Reporter, 2014, 32 : 318 - 327
  • [9] Common bean (Phaseolus vulgaris L)
    Graham, PH
    Ranalli, P
    FIELD CROPS RESEARCH, 1997, 53 (1-3) : 131 - 146
  • [10] ORIGIN OF COMMON BEAN PHASEOLUS VULGARIS
    GENTRY, HS
    ECONOMIC BOTANY, 1969, 23 (01) : 55 - &