Effects of annealing temperature on GO-Cu2O composite films grown by electrochemical deposition for PEC photoelectrode

被引:7
作者
Kim, Tae Gyoum [1 ]
Ryu, Hyukhyun [1 ]
Lee, Won-Jae [2 ]
Yoon, Jang-Hee [3 ]
机构
[1] Inje Univ, Res Ctr, High Safety Vehicle Core Technol, Dept Nano Sci & Engn, Gimhae 621749, Gyeongnam, South Korea
[2] Dong Eui Univ, Dept Mat & Components Engn, Pusan 614714, South Korea
[3] Korea Basic Sci Inst, High Technol Components & Mat Res Ctr, Pusan 618230, South Korea
基金
新加坡国家研究基金会;
关键词
GO-Cu2O composite films; Electrochemical deposition (ECD); Photoelectrochemical (PEC); Annealing; X-ray photoelectron spectroscopy (XPS); REDUCED GRAPHENE OXIDE; CUPROUS-OXIDE; ZNO NANORODS; ULTRATHIN FILMS; VERTICAL GROWTH; ANODE MATERIAL; TIO2; NANORODS; ITO SUBSTRATE; CU2O FILMS; THIN-FILMS;
D O I
10.1016/j.cap.2015.01.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, graphene oxide-cuprous oxide (GO-Cu2O) composite films were grown on fluorine-doped tin oxide substrates by electrochemical deposition. We investigated the effects of the annealing temperature on the morphological, structural, optical and photoelectrochemical (PEC) properties of GO-Cu2O composite films. As a result, our work shows that while GO-Cu2O composite films exhibit the highest XRD (111) peak intensity at 300 degrees C sample, the highest photocurrent density value obtained was -4.75 mA/cm(2) at 200 degrees C sample (using 0.17 V versus a reversible hydrogen electrode (RHE)). In addition, a reduction reaction at 300 degrees C sample was observed using XPS analysis from the shift in the O1s peak in addition to a weaker O1s peak intensity. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:473 / 478
页数:6
相关论文
共 45 条
[1]   Following Charge Separation on the Nanoscale in Cu2O-Au Nanoframe Hollow Nanoparticles [J].
A. Mahmoud, Mahmoud ;
Qian, Wei ;
El-Sayed, Mostafa A. .
NANO LETTERS, 2011, 11 (08) :3285-3289
[2]   Performance Enhancement of ZnO Photocatalyst via Synergic Effect of Surface Oxygen Defect and Graphene Hybridization [J].
Bai, Xiaojuan ;
Wang, Li ;
Zong, Ruilong ;
Lv, Yanhui ;
Sun, Yiqing ;
Zhu, Yongfa .
LANGMUIR, 2013, 29 (09) :3097-3105
[3]   Electrochemical deposition of copper oxide nanowires for photoelectrochemical applications [J].
Chen, Le ;
Shet, Sudhakar ;
Tang, Houwen ;
Wang, Heli ;
Deutsch, Todd ;
Yan, Yanfa ;
Turner, John ;
Al-Jassim, Mowafak .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (33) :6962-6967
[4]   Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production [J].
Cho, In Sun ;
Chen, Zhebo ;
Forman, Arnold J. ;
Kim, Dong Rip ;
Rao, Pratap M. ;
Jaramillo, Thomas F. ;
Zheng, Xiaolin .
NANO LETTERS, 2011, 11 (11) :4978-4984
[5]   Cu2O:: a catalyst for the photochemical decomposition of water? [J].
de Jongh, PE ;
Vanmaekelbergh, D ;
Kelly, JJ .
CHEMICAL COMMUNICATIONS, 1999, (12) :1069-1070
[6]   Cu2O:: Electrodeposition and characterization [J].
de Jongh, PE ;
Vanmaekelbergh, D ;
Kelly, JJ .
CHEMISTRY OF MATERIALS, 1999, 11 (12) :3512-3517
[7]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[8]   ZnO Nanowires, Nanotubes, and Complex Hierarchical Structures Obtained by Electrochemical Deposition [J].
Elias, Jamil ;
Michler, Johann ;
Philippe, Laetitia ;
Lin, Ming-Yun ;
Couteau, Christophe ;
Lerondel, Gilles ;
Levy-Clement, Claude .
JOURNAL OF ELECTRONIC MATERIALS, 2011, 40 (05) :728-732
[9]   Electrochemically grown ZnO nanorods for hybrid solar cell applications [J].
Hames, Yakup ;
Alpaslan, Zuehal ;
Koesemen, Arif ;
San, Sait Eren ;
Yerli, Yusuf .
SOLAR ENERGY, 2010, 84 (03) :426-431
[10]   Magnesium-Doped Zinc Oxide Electrochemically Grown on Fluorine-Doped Tin Oxide Substrate [J].
Han, Q. F. ;
Jeong, Y. I. ;
Heo, J. H. ;
Shin, C. M. ;
Ryu, H. ;
Park, M. S. ;
Lee, W. J. ;
Yoon, J. H. ;
Yang, J. E. ;
Choi, H. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (04) :3677-3681