Equal-time two-point correlation functions in Coulomb gauge Yang-Mills theory

被引:11
作者
Campagnari, D. [2 ]
Weber, A. [1 ]
Reinhardt, H. [2 ]
Astorga, F. [1 ]
Schleifenbaum, W. [2 ]
机构
[1] Univ Michoacana, Inst Fis Matemat, Morelia 58040, Michoacan, Mexico
[2] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany
关键词
Coulomb gauge; Hamiltonian approach; Vacuum wave functional; Perturbation theory; Equal-time correlation functions; Anomalous dimensions; INFRARED BEHAVIOR; FEYNMAN-RULES; QCD; RENORMALIZATION; CONFINEMENT; GLUON;
D O I
10.1016/j.nuclphysb.2010.09.013
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We apply a functional perturbative approach to the calculation of the equal-time two-point correlation functions and the potential between static color charges to one-loop order in Coulomb gauge Yang Mills theory. The functional approach proceeds through a solution of the Schrodinger equation for the vacuum wave functional to order g(2) and derives the equal-time correlation functions from a functional integral representation via new diagrammatic rules. We show that the results coincide with those obtained from the usual Lagrangian functional integral approach, extract the beta function, and determine the anomalous dimensions of the equal-time gluon and ghost two-point functions and the static potential under the assumption of multiplicative renormalizability to all orders. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:501 / 528
页数:28
相关论文
共 53 条
[1]  
[Anonymous], 2012, The principles of quantum mechanics
[2]   BRST symmetry versus horizon condition in Yang-Mills theories [J].
Burgio, G. ;
Quandt, M. ;
Reinhardt, H. .
PHYSICAL REVIEW D, 2010, 81 (07)
[3]   Coulomb-Gauge Gluon Propagator and the Gribov Formula [J].
Burgio, G. ;
Quandt, M. ;
Reinhardt, H. .
PHYSICAL REVIEW LETTERS, 2009, 102 (03)
[4]   Perturbation theory in the Hamiltonian approach to Yang-Mills theory in Coulomb gauge [J].
Campagnari, Davide R. ;
Reinhardt, Hugo ;
Weber, Axel .
PHYSICAL REVIEW D, 2009, 80 (02)
[5]   INCONSISTENCY OF FEYNMAN-RULES DERIVED VIA PATH INTEGRATION [J].
CHENG, H ;
TSAI, EC .
PHYSICAL REVIEW LETTERS, 1986, 57 (05) :511-514
[6]   OPERATOR ORDERING AND FEYNMAN-RULES IN GAUGE-THEORIES [J].
CHRIST, NH ;
LEE, TD .
PHYSICAL REVIEW D, 1980, 22 (04) :939-958
[7]   DYNAMICS OF GAUGE SYSTEMS AND DIRAC CONJECTURE [J].
COSTA, MEV ;
GIROTTI, HO ;
SIMOES, TJM .
PHYSICAL REVIEW D, 1985, 32 (02) :405-410
[8]   Gluon propagator and confinement scenario in Coulomb gauge [J].
Cucchieri, A ;
Zwanziger, D .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 119 :727-729
[9]  
Cucchieri A., 2001, PHYS REV D, V65
[10]   PERTURBATIVE AMBIGUITIES IN COULOMB GAUGE QCD [J].
DOUST, P .
ANNALS OF PHYSICS, 1987, 177 (02) :169-228