The role of localizable concurrence in quantum teleportation protocols

被引:1
作者
Consiglio, Mirko [1 ]
Mangion, Louis Zammit [1 ]
Apollaro, Tony John George [1 ]
机构
[1] Univ Malta, Dept Phys, Univ Ring Rd, Msida 2080, Malta
关键词
Localizable concurrence; quantum teleportation; GHZ states; quantum circuits; ENTANGLEMENT; STATE;
D O I
10.1142/S0219749921500246
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Teleporting an unknown qubit state is a paradigmatic quantum information processing task revealing the advantage of quantum communication protocols over their classical counterpart. For a teleportation protocol using a Bell state as quantum channel, the resource has been identified to be the concurrence. However, for mixed multipartite states the lack of computable entanglement measures has made the identification of the quantum resource responsible for this advantage more challenging. Here, by building on previous results showing that localizable concurrence is the necessary resource for controlled quantum teleportation, we show that any teleportation protocol using an arbitrary multipartite state, that includes a Bell measurement, requires a nonvanishing localizable concurrence between two of its parties to perform better than the classical protocol. By first analyzing Greenberger-Horne-Zeilinger (GHZ) channel and GHZ measurement teleportation protocol, in the presence of GHZ-symmetric-preserving noise, we compare different multipartite entanglement measures with the fidelity of teleportation, and we find that the protocol performs better than the classical protocol when all multipartite entanglement measures vanish, except for the localizable concurrence. Finally, we extend our proof to an arbitrary teleportation protocol with an arbitrary multipartite entangled channel.
引用
收藏
页数:18
相关论文
共 51 条
[1]   Classification of mixed three-qubit states -: art. no. 040401 [J].
Acín, A ;
Bruss, D ;
Lewenstein, M ;
Sanpera, A .
PHYSICAL REVIEW LETTERS, 2001, 87 (04) :40401-1
[2]   Perfect teleportation and superdense coding with W states [J].
Agrawal, Pankaj ;
Pati, Arun .
PHYSICAL REVIEW A, 2006, 74 (06)
[3]   Localizable entanglement as a necessary resource of controlled quantum teleportation [J].
Barasinski, Artur ;
Arkhipov, Ievgen I. ;
Svozilik, Jiri .
SCIENTIFIC REPORTS, 2018, 8
[4]  
Barnett SM., 2009, Quantum Information
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[7]   Multiparticle generalization of entanglement swapping [J].
Bose, S ;
Vedral, V ;
Knight, PL .
PHYSICAL REVIEW A, 1998, 57 (02) :822-829
[8]  
Chun M., 2010, COMMUN THEOR PHYS, V53, P489
[9]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[10]   Tripartite Entanglement: Foundations and Applications [J].
Cunha, Marcio M. ;
Fonseca, Alejandro ;
Silva, Edilberto O. .
UNIVERSE, 2019, 5 (10)