All-Solid-State Chloride-Ion Battery with Inorganic Solid Electrolyte

被引:17
|
作者
Sakamoto, Ryo [1 ]
Shirai, Nobuaki [2 ]
Inoishi, Atsushi [1 ]
Okada, Shigeto [1 ]
机构
[1] Kyushu Univ, Inst Mat Chem & Engn, 6-1 Kasuga Koen, Kasuga, Fukuoka 8168580, Japan
[2] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, 6-1 Kasuga Koen, Kasuga, Fukuoka 8168580, Japan
来源
CHEMELECTROCHEM | 2021年 / 8卷 / 23期
关键词
batteries; electrochemistry; solid electrolytes; chloride; power sources; CATHODE; CONDUCTIVITY;
D O I
10.1002/celc.202101017
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Chloride-ion batteries have some attractive properties such as high energy density and low cost. However, they have poor cycle performance because chloride as an active material tends to dissolve into a polar solvent. Herein, an all-solid-state chloride-ion battery is demonstrated with KCl-doped PbCl2 as a solid electrolyte to suppress the dissolution of chloride. The all-solid-state cell with BiCl3 as the cathode had an initial discharge capacity of 187 mAh g(-1), which corresponds to 73 % of the theoretical capacity of BiCl3. Moreover, it exhibited better cyclability compared to the previously reported non-aqueous cell with BiCl3 cathode. During the charge-discharge process, XRD and XPS analysis confirmed the unique behavior of conversion reaction by Cl- anion, where Bi is produced by discharging and BiCl3 returns by charging.
引用
收藏
页码:4441 / 4444
页数:4
相关论文
共 50 条
  • [1] An All-Solid-State Rechargeable Chloride Ion Battery
    Chen, Chao
    Yu, Tingting
    Yang, Meng
    Zhao, Xiangyu
    Shen, Xiaodong
    ADVANCED SCIENCE, 2019, 6 (06)
  • [2] Room-temperature Operation of All-solid-state Chloride-ion Battery with Perovskite-type CsSn0.95Mn0.05Cl3 as a Solid Electrolyte
    Sakamoto, Ryo
    Shirai, Nobuaki
    Zhao, Liwei
    Inoishi, Atsushi
    Sakaebe, Hikari
    Okada, Shigeto
    ELECTROCHEMISTRY, 2023, 91 (07)
  • [3] Effect of sol composition on solid electrode/solid electrolyte interface for all-solid-state lithium ion battery
    Kotobuki, Masashi
    Suzuki, Yuji
    Munakata, Hirokazu
    Kanamura, Kiyoshi
    Sato, Yosuke
    Yamamoto, Kazuhiro
    Yoshida, Toshihiro
    ELECTROCHIMICA ACTA, 2011, 56 (03) : 1023 - 1029
  • [4] Building a Better All-Solid-State Lithium-Ion Battery with Halide Solid-State Electrolyte
    Li, Chao
    Du, Yaping
    ACS NANO, 2025, 19 (04) : 4121 - 4155
  • [5] F and N Rich Solid Electrolyte for Stable All-Solid-State Battery
    Wan, Hongli
    Zhang, Jiaxun
    Xia, Jiale
    Ji, Xiao
    He, Xinzi
    Liu, Sufu
    Wang, Chunsheng
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (15)
  • [6] Coupled crack propagation and dendrite growth in solid electrolyte of all-solid-state battery
    Yuan, Chunhao
    Gao, Xiang
    Jia, Yikai
    Zhang, Wen
    Wu, Qingliu
    Xu, Jun
    NANO ENERGY, 2021, 86
  • [7] Multilayered, Bipolar, All-Solid-State Battery Enabled by a Perovskite-Based Biphasic Solid Electrolyte
    Shin, Hyun-Seop
    Ryu, Won-Gyue
    Park, Min-Sik
    Jung, Kyu-Nam
    Kim, Hansung
    Lee, Jong-Won
    CHEMSUSCHEM, 2018, 11 (18) : 3184 - 3190
  • [8] Formation Processes of a Solid Electrolyte Interphase at a Silicon/Sulfide Electrolyte Interface in a Model All-Solid-State Li-Ion Battery
    Asano, Sho
    Hata, Jun-Ichi
    Watanabe, Kenta
    Shimizu, Keisuke
    Matsui, Naoki
    Yamada, Norifumi L.
    Suzuki, Kota
    Kanno, Ryoji
    Hirayama, Masaaki
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (06) : 7189 - 7199
  • [9] Superior Ion-Conducting Hybrid Solid Electrolyte for All-Solid-State Batteries
    Kim, Jae-Kwang
    Scheers, Johan
    Park, Tae Joo
    Kim, Youngsik
    CHEMSUSCHEM, 2015, 8 (04) : 636 - 641
  • [10] Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries
    Xiao, Yiran
    Turcheniuk, Kostiantyn
    Narla, Aashray
    Song, Ah-Young
    Ren, Xiaolei
    Magasinski, Alexandre
    Jain, Ayush
    Huang, Shirley
    Lee, Haewon
    Yushin, Gleb
    NATURE MATERIALS, 2021, 20 (07) : 984 - +