Stochastic integration with respect to Volterra processes

被引:34
作者
Decreusefond, L [1 ]
机构
[1] ENST, UMR 5141, CNRS, F-75634 Paris, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2005年 / 41卷 / 02期
关键词
fractional Brownian motion; malliavin calculus; stochastic integral;
D O I
10.1016/j.anihpb.2004.03.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct the basis of a stochastic calculus for so-called Volterra processes, i.e., processes which are defined as the stochastic integral of a time-dependent kernel with respect to a standard Brownian motion. For these processes which are natural generalization of fractional Brownian motion, we construct a stochastic integral and show some of its main properties: regularity with respect to time and kernel, transformation under an absolutely continuous change of probability, possible approximation schemes and W formula. (c) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:123 / 149
页数:27
相关论文
共 26 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[3]  
Alòs E, 2001, TAIWAN J MATH, V5, P609
[4]  
[Anonymous], 1988, SPECIAL FUNCTIONS MA, DOI DOI 10.1007/978-1-4757-1595-8
[5]  
[Anonymous], 1995, LECT NOTES MATH
[6]   Identification of a multifractional Gaussian process with a piece-wise constant scale function [J].
Benassi, A ;
Bertrand, P ;
Cohen, S ;
Istas, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (05) :435-440
[7]   Stochastic integration with respect to fractional Brownian motion [J].
Carmona, P ;
Coutin, L ;
Montseny, G .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01) :27-68
[8]   Stochastic differential equations for fractional Brownian motions [J].
Coutin, L ;
Qian, ZM .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (01) :75-80
[9]  
Dai W, 1996, J APPL MATH STOCHAST, V10, P439, DOI DOI 10.1155/S104895339600038X
[10]   Stochastic analysis of the fractional Brownian motion [J].
Decreusefond, L ;
Üstünel, AS .
POTENTIAL ANALYSIS, 1999, 10 (02) :177-214