Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance

被引:82
|
作者
Faghani, Elham [1 ]
Gharechahi, Javad [1 ]
Komatsu, Setsuko [2 ]
Mirzaei, Mehdi [3 ]
Khavarinejad, Raman Ali [4 ]
Najafi, Farzaneh [4 ]
Farsad, Laleh Karimi [1 ]
Salekdeh, Ghasern Hosseini [1 ,5 ]
机构
[1] Agr Biotechnol Res Inst Iran, Dept Syst Biol, Karaj, Iran
[2] Natl Inst Crop Sci, Tsukuba, Ibaraki 3058518, Japan
[3] Macquarie Univ, Dept Chem & Biomol Sci, Sydney, NSW 2109, Australia
[4] Kharazmi Univ Tehran, Fac Sci, Tehran, Iran
[5] ACECR, Royan Inst Stem Cell Biol & Technol, Cell Sci Res Ctr, Dept Mol Syst Biol, Tehran, Iran
基金
澳大利亚研究理事会;
关键词
Wheat; Drought stress; Relative water content; Two-dimensional gel electrophoresis; Proteomics; Mass spectrometry; HARPIN-ENCODING GENE; OXIDATIVE STRESS; SUPEROXIDE-DISMUTASE; WATER-DEFICIT; ASCORBATE PEROXIDASE; PROTEINS; OVEREXPRESSION; EXPRESSION; PLANTS; GROWTH;
D O I
10.1016/j.jprot.2014.10.018
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Comparative physiology and proteomic analyses were conducted to monitor the stress response of two wheat genotypes (SERI M 82 (SE) and SW89.5193/kAu2 (SW)) with contrasting responses to drought stress. Under stress condition, the tolerant genotype (SE) produced higher shoot and root biomasses, longer roots and accumulated higher level of ABA in leaves. Physiological measurements suggested that the SE genotype was more efficient in water absorption and could preserve more water presumably by controlling stomata closure. Proteomic analysis showed an increased abundance of proteins related to defense and oxidative stress responses such as GLPs, GST, and SOD, and those related to protein processing such as small HSPs in roots of both genotypes in response to drought stress. Interestingly, the abundance of proteins such as endo-1,3-beta-glucosidase, peroxidase, SAMS, and MDH significantly increased in roots or leaves of the SE genotype and decreased in that of the SW one. In addition, an increased abundance of APX was detected in leaves and roots of the SE genotype and a decreased abundance of 14-3-3 and ribosomal proteins were noted in the SW one in response to drought stress. Our findings led to a better understanding about the integrated physiology and proteome responses of wheat genotypes with nearly contrasting responses to drought stress. Biological significance We applied a comparative physiology and proteomic analysis to decipher the differential responses of two contrasting wheat genotypes to drought stress. Based on physiological measurements the tolerant genotype (SE) showed better drought response by developing deep root system, higher root and shoot biomasses, and higher level of ABA in leaves. Proteomic analysis showed an increased abundance of proteins related to defense and oxidative stress responses such as GLPs, GST, and SOD, and those related to protein processing such as small HSPs in roots of both genotypes in response to drought stress. In addition, the abundance of proteins such as glucan endo-1,3-beta-glucosidase, peroxi-dases, SAMS, and MDH increased in roots or leaves of the tolerant genotype (SE) and decreased in that of the sensitive genotype (SW). Overall, proteins related to oxidative stress, protein processing and photosynthesis showed decreased abundance to a greater extent in the sensitive genotype (SW). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Data in support of comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance
    Faghani, Elham
    Gharechahi, Javad
    Komatsu, Setsuko
    Mirzaei, Mehdi
    Khavarinejad, Ramzan Ali
    Najafi, Farzaneh
    Farsad, Laleh Karimi
    Salekdeh, Ghasem Hosseini
    DATA IN BRIEF, 2015, 2 : 26 - 28
  • [2] Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance
    Jitendra Kumar
    Samatha Gunapati
    Shahryar F. Kianian
    Sudhir P. Singh
    Protoplasma, 2018, 255 : 1487 - 1504
  • [3] Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance
    Kumar, Jitendra
    Gunapati, Samatha
    Kianian, Shahryar F.
    Singh, Sudhir P.
    PROTOPLASMA, 2018, 255 (05) : 1487 - 1504
  • [4] Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype
    Wang, Nanbo
    Zhao, Jing
    He, Xiaoyan
    Sun, Hongyan
    Zhang, Guoping
    Wu, Feibo
    BMC GENOMICS, 2015, 16
  • [5] Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype
    Nanbo Wang
    Jing Zhao
    Xiaoyan He
    Hongyan Sun
    Guoping Zhang
    Feibo Wu
    BMC Genomics, 16
  • [6] Comparative Proteomic Analysis of Two Sugar Beet Cultivars with Contrasting Drought Tolerance
    Yuguang Wang
    Chunxue Peng
    Yanan Zhan
    Lihua Yu
    Mao Li
    Jing Li
    Gui Geng
    Journal of Plant Growth Regulation, 2017, 36 : 537 - 549
  • [7] Comparative Proteomic Analysis of Two Sugar Beet Cultivars with Contrasting Drought Tolerance
    Wang, Yuguang
    Peng, Chunxue
    Zhan, Yanan
    Yu, Lihua
    Li, Mao
    Li, Jing
    Geng, Gui
    JOURNAL OF PLANT GROWTH REGULATION, 2017, 36 (03) : 537 - 549
  • [8] Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance
    Wang, Yuguang
    Stevanato, Piergiorgio
    Lv, Chunhua
    Li, Renren
    Geng, Gui
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (21) : 6056 - 6073
  • [9] Comparative proteomic analysis of two sesame genotypes with contrasting salinity tolerance in response to salt stress
    Zhang, Yujuan
    Wei, Mengyuan
    Liu, Aili
    Zhou, Rong
    Li, Donghua
    Dossa, Komivi
    Wang, Linhai
    Zhang, Yanxin
    Gong, Huihui
    Zhang, Xiurong
    You, Jun
    JOURNAL OF PROTEOMICS, 2019, 201 : 73 - 83
  • [10] Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance
    Ibrahim, Wasim
    Qiu, Cheng-Wei
    Zhang, Can
    Cao, Fangbin
    Zhu Shuijin
    Wu, Feibo
    PHYSIOLOGIA PLANTARUM, 2019, 165 (02) : 155 - 168