RUDIN-SHAPIRO SEQUENCES ALONG SQUARES

被引:9
作者
Mauduit, Christian [1 ,2 ]
Rivat, Joel [3 ]
机构
[1] Univ Aix Marseille, Case 907,163 Ave Luminy, F-13288 Marseille 9, France
[2] CNRS, UMR 7373, Inst Math Marseille, Inst Univ France, Case 907,163 Ave Luminy, F-13288 Marseille 9, France
[3] Univ Aix Marseille, CNRS, UMR 7373, Inst Math Marseille, Case 907,163 Ave Luminy, F-13288 Marseille 9, France
基金
奥地利科学基金会;
关键词
Rudin-Shapiro sequences; exponential sums; OF-DIGITS FUNCTION; POLYNOMIAL-SEQUENCES; LEBESGUE COMPONENT; ERGODIC AVERAGES; ARITHMETIC SETS; PRIME-NUMBERS; PROPERTY; SPECTRUM; SUM; THEOREMS;
D O I
10.1090/tran/7210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We estimate exponential sums of the form Sigma(n <= x) f(n(2)) e(nu n) for a large class of digital functions f and nu is an element of R. We deduce from these estimates the distribution along squares of this class of digital functions which includes the Rudin-Shapiro sequence and some of its generalizations.
引用
收藏
页码:7899 / 7921
页数:23
相关论文
共 42 条