Two-fluid stellar objects in general relativity: The covariant formulation

被引:10
作者
Naidu, Nolene F. [1 ]
Carloni, Sante [2 ]
Dunsby, Peter [1 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, Cape Town, South Africa
[2] Univ Genoa, DIME Sez Metodi & Modelli Matemat, Via All Opera Pia 15, I-16145 Genoa, Italy
基金
新加坡国家研究基金会;
关键词
STATIC SOLUTIONS; NEUTRON-STARS; DARK-MATTER; THIN SHELLS; PERTURBATIONS; FIELD; SUPERFLUID;
D O I
10.1103/PhysRevD.104.044014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply the 1 + 1 + 2 covariant approach to describe a general static and spherically symmetric relativistic stellar object which contains two interacting fluids. We then use the 1 + 1 + 2 equations to derive the corresponding Tolman-Oppenheimer-Volkoff equations in covariant form in the isotropic noninteracting case. These equations are used to obtain new exact solutions by means of direct resolution and reconstruction techniques. Finally, we show that the generating theorem known for the single-fluid case can also be used to obtain two-fluid solutions from single-fluid ones.
引用
收藏
页数:19
相关论文
共 42 条
[1]   THIN SHELLS IN GENERAL-RELATIVITY AND COSMOLOGY - THE LIGHTLIKE LIMIT [J].
BARRABES, C ;
ISRAEL, W .
PHYSICAL REVIEW D, 1991, 43 (04) :1129-1142
[2]   Scalar field and electromagnetic perturbations on locally rotationally symmetric spacetimes [J].
Betschart, G ;
Clarkson, CA .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (23) :5587-5607
[3]   Generating perfect fluid spheres in general relativity [J].
Boonserm, P ;
Visser, M ;
Weinfurtner, S .
PHYSICAL REVIEW D, 2005, 71 (12)
[4]   Solution generating theorems for the Tolman-Oppenheimer-Volkov equation [J].
Boonserm, Petarpa ;
Visser, Matt ;
Weinfurtner, Silke .
PHYSICAL REVIEW D, 2007, 76 (04)
[5]   COSMOLOGICAL PERTURBATIONS AND THE PHYSICAL MEANING OF GAUGE-INVARIANT VARIABLES [J].
BRUNI, M ;
DUNSBY, PKS ;
ELLIS, GFR .
ASTROPHYSICAL JOURNAL, 1992, 395 (01) :34-53
[6]   GENERAL RELATIVISTIC FLUID SPHERES [J].
BUCHDAHL, HA .
PHYSICAL REVIEW, 1959, 116 (04) :1027-1034
[7]  
Carloni S, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.124056
[8]   Covariant Tolman-Oppenheimer-Volkoff equations. II. The anisotropic case [J].
Carloni, Sante ;
Vernieri, Daniele .
PHYSICAL REVIEW D, 2018, 97 (12)
[9]   Reconstructing static spherically symmetric metrics in general relativity [J].
Carloni, Sante .
PHYSICAL REVIEW D, 2014, 90 (04)
[10]   KALB-RAMOND COUPLED VORTEX FIBRATION MODEL FOR RELATIVISTIC SUPERFLUID DYNAMICS [J].
CARTER, B ;
LANGLOIS, D .
NUCLEAR PHYSICS B, 1995, 454 (1-2) :402-424