Modification of Graphene/SiO2 Interface by UV-Irradiation: Effect on Electrical Characteristics

被引:46
作者
Imamura, Gaku [1 ]
Saiki, Koichiro [1 ]
机构
[1] Univ Tokyo, Dept Complex Sci & Engn, Kashiwa, Chiba 2778561, Japan
关键词
graphene; defect formation; field effect transistors; carrier doping; photochemical reactions; Raman spectroscopy; BEHAVIOR; DEFECTS; SURFACE;
D O I
10.1021/am5071464
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene is a promising material for next-generation electronic devices. The effect of UV-irradiation on the graphene devices, however, has not been fully explored yet. Here we investigate the UV-induced change of the field effect transistor (FET) characteristics of graphene/SiO2. UV-irradiation in a vacuum gives rise to the decrease in carrier mobility and a hysteresis in the transfer characteristics. Annealing at 160 degrees C in a vacuum eliminates the hysteresis, recovers the mobility partially, and moves the charge neutrality point to the negative direction. Corresponding Raman spectra indicated that UV-irradiation induced D band relating with defects and the annealing at 160 degrees C in a vacuum removed the D band. We propose a phenomenological model for the UV-irradiated graphene, in which photochemical reaction produces dangling bonds and the weak sp(3)-like bonds at the graphene/SiO2 interface, and the annealing restores the intrinsic graphene/SiO2 interface by removal of such bonds. Our results shed light to the nature of defect formation by UV-light, which is important for the practical performance of graphene based electronics.
引用
收藏
页码:2439 / 2443
页数:5
相关论文
共 36 条
[1]   Evolution of Ar+-damaged graphite surface during annealing as investigated by scanning probe microscopy [J].
An, B ;
Fukuyama, S ;
Yokogawa, K ;
Yoshimura, M .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (05) :2317-2322
[2]   Enhancement of Chemical Activity in Corrugated Graphene [J].
Boukhvalov, Danil W. ;
Katsnelson, Mikhail I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (32) :14176-14178
[3]   Defect Scattering in Graphene [J].
Chen, Jian-Hao ;
Cullen, W. G. ;
Jang, C. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[4]   Self healing of defected graphene [J].
Chen, Jianhui ;
Shi, Tuwan ;
Cai, Tuocheng ;
Xu, Tao ;
Sun, Litao ;
Wu, Xiaosong ;
Yu, Dapeng .
APPLIED PHYSICS LETTERS, 2013, 102 (10)
[5]   Graphene for energy conversion and storage in fuel cells and supercapacitors [J].
Choi, Hyun-Jung ;
Jung, Sun-Min ;
Seo, Jeong-Min ;
Chang, Dong Wook ;
Dai, Liming ;
Baek, Jong-Beom .
NANO ENERGY, 2012, 1 (04) :534-551
[6]   General observation of n-type field-effect behaviour in organic semiconductors [J].
Chua, LL ;
Zaumseil, J ;
Chang, JF ;
Ou, ECW ;
Ho, PKH ;
Sirringhaus, H ;
Friend, RH .
NATURE, 2005, 434 (7030) :194-199
[7]   Hydrophilic nature of silicate glass surfaces as a function of exposure condition [J].
DeRosa, RL ;
Schader, PA ;
Shelby, JE .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2003, 331 (1-3) :32-40
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: Analysis of catalytic activity for the oxygen reduction reaction [J].
Huang, Sheng-Feng ;
Terakura, Kiyoyuki ;
Ozaki, Taisuke ;
Ikeda, Takashi ;
Boero, Mauro ;
Oshima, Masaharu ;
Ozaki, Jun-ichi ;
Miyata, Seizo .
PHYSICAL REVIEW B, 2009, 80 (23)
[10]   Graphene-Based Electrodes [J].
Huang, Xiao ;
Zeng, Zhiyuan ;
Fan, Zhanxi ;
Liu, Juqing ;
Zhang, Hua .
ADVANCED MATERIALS, 2012, 24 (45) :5979-6004