Proximal point algorithm for minimization of DC function

被引:0
作者
Sun, WY
Sampaio, RJB
Candido, MAB
机构
[1] Nanjing Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Peoples R China
[2] Pontificia Univ Catolica Parana, Programa Pos Grad Informat Aplicada, BR-80215901 Curitiba, Parana, Brazil
关键词
nonconvex optimization; nonsmooth optimization; DC function; proximal point algorithm; epsilon-subgradient;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present some algorithms for minimization of DC function (difference of two convex functions). They are descent methods of the proximal-type which use the convex properties of the two convex functions separately. We also consider an approximate proximal point algorithm. Some properties of the c-sub differential and the c-directional derivative are discussed. The convergence properties of the algorithms are established in both exact and approximate forms. Finally, we give some applications to the concave programming and maximum eigenvalue problems.
引用
收藏
页码:451 / 462
页数:12
相关论文
共 24 条
[1]  
[Anonymous], 1995, MINIMAX APPL
[2]  
Auchmuty G, 1988, UHMD41
[3]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[4]   CRITICAL-POINT APPROXIMATION THROUGH EXACT REGULARIZATION [J].
FERNANDEZCARA, E ;
MORENO, C .
MATHEMATICS OF COMPUTATION, 1988, 50 (181) :139-153
[5]   A globally and superlinearly convergent algorithm for nonsmooth convex minimization [J].
Fukushima, M ;
Qi, LQ .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (04) :1106-1120
[6]   A DESCENT ALGORITHM FOR NONSMOOTH CONVEX-OPTIMIZATION [J].
FUKUSHIMA, M .
MATHEMATICAL PROGRAMMING, 1984, 30 (02) :163-175
[7]  
Hiriart-Urruty J. B., 1993, CONVEX ANAL MINIMIZA
[8]  
Hiriart-Urruty J.B., 1989, Nonsmooth Optimization and Related Topics, V43, DOI [10.1007/978-1-4757-6019-4_13, DOI 10.1007/978-1-4757-6019-4_13]
[9]  
HIRIARTURRUTY JB, 1985, LECT NOTES ECON MATH, V256, P37
[10]  
HIRIARTURRUTY JB, 1988, MTHEMATICAL PROGRAMM, V41