On the motion of a triple pendulum system under the influence of excitation force and torque

被引:21
作者
Amer, T. S. [1 ]
Galal, A. A. [2 ]
Abolila, A. F. [2 ]
机构
[1] Tanta Univ, Math Dept, Fac Sci, Tanta 31527, Egypt
[2] Tanta Univ, Fac Engn, Phys & Engn Math Dept, Tanta 31734, Egypt
关键词
Multiple scales technique; nonlinear dynamics; resonance; stability; triple pendulum; RESONANCES;
D O I
10.48129/kjs.v48i4.9915
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, a nonlinear dynamical system with three degrees of freedom (DOF) consisting of multiple pendulums (MP) is investigated. The motion of this system is restricted to be in a vertical plane, in which its pivot point moves in a circular path with constant angular velocity, under the action of an external harmonic force and a moment acting perpendicular to the direction of the last arm of MP and at the suspension point respectively. Multiple scales technique (MST) among other perturbation methods is used to obtain the approximate solutions of the equations of motion up to the third approximation because it is authorizing to execute a specific analysis of the system behaviour and to realize the solvability conditions given the resonance cases. The stability of the considered dynamical model utilizing the nonlinear stability analysis approach is examined. The solutions diagrams and resonance curves are drawn to illustrate the extent of the effect of various parameters on the solutions. The importance of this work is due to its uses in human or robotic walking analysis.
引用
收藏
页数:17
相关论文
共 26 条
  • [1] On the motion of a harmonically excited damped spring pendulum in an elliptic path
    Amer, T. S.
    Bek, M. A.
    Abohamer, M. K.
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2019, 95 : 23 - 34
  • [2] On the vibrational analysis for the motion of a harmonically damped rigid body pendulum
    Amer, T. S.
    Bek, M. A.
    Abouhmr, M. K.
    [J]. NONLINEAR DYNAMICS, 2018, 91 (04) : 2485 - 2502
  • [3] On the Motion of Harmonically Excited Spring Pendulum in Elliptic Path Near Resonances
    Amer, T. S.
    Bek, M. A.
    Hamada, I. S.
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [4] Awrejcewicz, 2012, Classical Mechanics: Dynamics
  • [5] Stability analysis and Lyapunov exponents of a multi-body mechanical system with rigid unilateral constraints
    Awrejcewicz, J.
    Kudra, G.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E909 - E918
  • [6] The piston - Connecting rod - Crankshaft system as a triple physical pendulum with impacts
    Awrejcewicz, J
    Kudra, G
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (07): : 2207 - 2226
  • [7] Investigation of triple pendulum with impacts using fundamental solution matrices
    Awrejcewicz, J
    Kudra, G
    Lamarque, CH
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (12): : 4191 - 4213
  • [8] Experimental and numerical investigation of chaotic regions in the triple physical pendulum
    Awrejcewicz, Jan
    Kudra, Grzegorz
    Wasilewski, Grzegorz
    [J]. NONLINEAR DYNAMICS, 2007, 50 (04) : 755 - 766
  • [9] Asymptotic Analysis of Resonances in Nonlinear Vibrations of the 3-dof Pendulum
    Awrejcewicz J.
    Starosta R.
    Sypniewska-Kamińska G.
    [J]. Differential Equations and Dynamical Systems, 2013, 21 (1-2) : 123 - 140
  • [10] Stationary and transient resonant response of a spring pendulum
    Awrejcewicz, Jan
    Starosta, Roman
    Sypniewska-Kaminska, Grazyna
    [J]. IUTAM SYMPOSIUM ANALYTICAL METHODS IN NONLINEAR DYNAMICS, 2016, 19 : 201 - 208