Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations

被引:141
作者
Ohno, Nobutada [1 ]
Okumura, Dai [1 ]
机构
[1] Nagoya Univ, Dept Mech Sci & Engn, Chikusa Ku, Nagoya, Aichi 4648603, Japan
关键词
dislocations; strengthening and mechanisms; crystal plasticity; elastic-plastic material; metallic material; STRAIN-GRADIENT PLASTICITY; SINGLE-CRYSTAL PLASTICITY; POLYCRYSTALLINE METALS; TENSILE DEFORMATION; ALUMINUM; VISCOPLASTICITY; FORMULATION; EVOLUTION; STRENGTH; MODELS;
D O I
10.1016/j.jmps.2007.02.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The higher-order stress work-conjugate to slip gradient in single crystals at small strains is derived based on the self-energy of geometrically necessary dislocations (GNDs). It is shown that this higher-order stress changes stepwise as a function of in-plane slip gradient and therefore significantly influences the onset of initial yielding in polycrystals. The higher-order stress based on the self-energy of GNDs is then incorporated into the strain gradient plasticity theory of Gurtin [2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5-32] and applied to single-slip-oriented 2D and 3D model crystal grains of size D. It is thus found that the self-energy of GNDs gives a D-1-dependent term for the averaged resolved shear stress in such a model grain under yielding. Using published experimental data for several polycrystalline metals, it is demonstrated that the D-1-dependent term successfully explains the grain size dependence of initial yield stress and the dislocation cell size dependence of flow stress in the submicron to several-micron range of grain and cell sizes. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1879 / 1898
页数:20
相关论文
共 44 条
[1]   Lattice incompatibility and a gradient theory of crystal plasticity [J].
Acharya, A ;
Bassani, JL .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (08) :1565-1595
[2]   ON THE MICROSTRUCTURAL ORIGIN OF CERTAIN INELASTIC MODELS [J].
AIFANTIS, EC .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1984, 106 (04) :326-330
[3]   A one-dimensional theory of strain-gradient plasticity: Formulation, analysis, numerical results [J].
Anand, L ;
Gurtin, ME ;
Lele, SP ;
Gething, C .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2005, 53 (08) :1789-1826
[4]   DEFORMATION OF PLASTICALLY NON-HOMOGENEOUS MATERIALS [J].
ASHBY, MF .
PHILOSOPHICAL MAGAZINE, 1970, 21 (170) :399-&
[5]   EXTENSION OF THE SELF-CONSISTENT SCHEME TO PLASTICALLY-FLOWING POLYCRYSTALS [J].
BERVEILLER, M ;
ZAOUI, A .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1978, 26 (05) :325-344
[6]  
BUDIANSKY B, 1962, P 4 US NAT C APPL ME, P1175
[7]   STRAIN GRADIENT PLASTICITY - THEORY AND EXPERIMENT [J].
FLECK, NA ;
MULLER, GM ;
ASHBY, MF ;
HUTCHINSON, JW .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :475-487
[8]   A reformulation of strain gradient plasticity [J].
Fleck, NA ;
Hutchinson, JW .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2001, 49 (10) :2245-2271
[9]   Strain gradient plasticity [J].
Fleck, NA ;
Hutchinson, JW .
ADVANCES IN APPLIED MECHANICS, VOL 33, 1997, 33 :295-361
[10]   Size-dependent yield strength of thin films [J].
Fredriksson, P ;
Gudmundson, P .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (09) :1834-1854