OPELM and OPKNN in long-term prediction of time series using projected input data

被引:12
|
作者
Sovilj, Dusan [1 ]
Sorjamaa, Antti [1 ]
Yu, Qi [1 ]
Miche, Yoan [1 ]
Severin, Eric [2 ]
机构
[1] Aalto Univ, Dept Informat & Comp Sci, Helsinki 02015, Finland
[2] Univ Lille 1, Lab Econ Management, F-59653 Villeneuve Dascq, France
关键词
Long-term time series prediction; Projection; Genetic algorithm; Delta test; OPELM; OPKNN; Hannan-Quinn information criterion; GENETIC ALGORITHMS; REGRESSION; ORDER;
D O I
10.1016/j.neucom.2009.11.033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Long-term time series prediction is a difficult task. This is due to accumulation of errors and inherent uncertainties of a long-term prediction, which leads to deteriorated estimates of the future instances. In order to make accurate predictions, this paper presents a methodology that uses input processing before building the model. Input processing is a necessary step due to the curse of dimensionality, where the aim is to reduce the number of input variables or features. In the paper, we consider the combination of the delta test and the genetic algorithm to obtain two aspects of reduction: scaling and projection. After input processing, two fast models are used to make the predictions: optimally pruned extreme learning machine and optimally pruned k-nearest neighbors. Both models have fast training times, which makes them suitable choice for direct strategy for long-term prediction. The methodology is tested on three different data sets: two time series competition data sets and one financial data set. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1976 / 1986
页数:11
相关论文
共 50 条
  • [21] A long-term multivariate time series prediction model for dissolved oxygen
    Hu, Jingzhe
    Wang, Peixuan
    Li, Dashe
    Liu, Shue
    ECOLOGICAL INFORMATICS, 2024, 82
  • [22] VAECGAN: a generating framework for long-term prediction in multivariate time series
    Yin, Xiang
    Han, Yanni
    Xu, Zhen
    Liu, Jie
    CYBERSECURITY, 2021, 4 (01)
  • [23] Multi-Model Integration for Long-Term Time Series Prediction
    Huang, Zifang
    Shyu, Mei-Ling
    Tien, James M.
    2012 IEEE 13TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2012, : 116 - 123
  • [24] A Review of Machine Learning Methods for Long-Term Time Series Prediction
    Ptotic, Milan P.
    Stojanovic, Milos B.
    Popovic, Predrag M.
    2022 57TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES (ICEST), 2022, : 205 - 208
  • [25] Long-Term Prediction of Time Series by combining Direct and MIMO Strategies
    Ben Taieb, Souhaib
    Bontempi, Gianluca
    Sorjamaa, Antti
    Lendasse, Amaury
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 1559 - +
  • [26] Long-Term Time-Series Prediction Using Radial Basis Function Neural Networks
    Alexandridis, Alex
    Famelis, Ioannis Th.
    Tsitouras, Charalambos
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [27] Advanced time-series prediction of bridge long-term deflection using the learning models
    Zhu, Siyu
    Yang, Mengxue
    Xiang, Tianyu
    Xu, Xinyu
    Li, Yongle
    STRUCTURES, 2024, 67
  • [28] Novel robust time series analysis for long-term and short-term prediction
    Okamura, Hiroshi
    Osada, Yutaka
    Nishijima, Shota
    Eguchi, Shinto
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [29] Novel robust time series analysis for long-term and short-term prediction
    Hiroshi Okamura
    Yutaka Osada
    Shota Nishijima
    Shinto Eguchi
    Scientific Reports, 11
  • [30] Long-term missing value imputation for time series data using deep neural networks
    Park, Jangho
    Muller, Juliane
    Arora, Bhavna
    Faybishenko, Boris
    Pastorello, Gilberto
    Varadharajan, Charuleka
    Sahu, Reetik
    Agarwal, Deborah
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (12): : 9071 - 9091