RAMANUJAN'S CUBIC CONTINUED FRACTION AND AN ANALOG OF HIS "MOST BEAUTIFUL IDENTITY"

被引:101
作者
Chan, Hei-Chi [1 ]
机构
[1] Univ Illinois, Dept Math Sci, Springfield, IL 62703 USA
关键词
Ramanujan's cubic continued fraction; Ramanujan's "Most Beautiful Identity; EXPLICIT EVALUATIONS;
D O I
10.1142/S1793042110003150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove an analog of Ramanujan's "Most Beautiful Identity". This analog is closely related to Ramanujan's beautiful results involving the cubic continued fraction.
引用
收藏
页码:673 / 680
页数:8
相关论文
共 31 条
[1]  
Adiga C, 2004, INDIAN J PURE AP MAT, V35, P1047
[2]   Congruence properties for the partition function [J].
Ahlgren, S ;
Ono, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :12882-12884
[3]   Distribution of the partition function module composite integers M [J].
Ahlgren, S .
MATHEMATISCHE ANNALEN, 2000, 318 (04) :795-803
[4]  
Andrews G.E., 2005, Ramanujan's Lost Notebook
[5]  
Andrews GE., 1976, The Theory of Partitions, Encyclopedia of Mathematics and its Applications
[6]  
Andrews George E, 1999, Encyclopedia of Mathematics and its Applications, V71, DOI DOI 10.1017/CBO9781107325937
[7]   Two parameters for Ramanujan's theta-functions and their explicit values [J].
Baruah, Nayandeep Deka ;
Saikia, Nipen .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (06) :1747-1790
[8]   Some general theorems on the explicit evaluations of Ramanujan's cubic continued fraction [J].
Baruah, ND ;
Saikia, N .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 160 (1-2) :37-51
[9]   Modular equations for Ramanujan's cubic continued fraction [J].
Baruah, ND .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) :244-255
[10]  
Berndt B. C., 1991, Ramanujan's Notebooks