Numerical comparison of two meshfree methods for acoustic wave scattering

被引:57
|
作者
Alves, CJS
Valtchev, SS [1 ]
机构
[1] Univ Tecn Lisboa, CEMAT, Inst Super Tecn, P-1049001 Lisbon, Portugal
[2] Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, P-1049001 Lisbon, Portugal
[3] Univ Tecn Lisboa, CEMAT, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
method of fundamental solutions; plane waves; acoustic scattering;
D O I
10.1016/j.enganabound.2004.09.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Density results using an infinite number of acoustic waves allow us to derive meshless methods for solving the homogeneous and the inhomogeneous Helmholtz equation. In this paper we consider the numerical simulation of acoustic scattering problems in a bounded domain using the plane waves method and the method of fundamental solutions. We establish a link between the two methods, namely the plane waves method may be seen as the asymptotic case of the method of fundamental solutions for distant source points. Several numerical tests comparing these methods are presented. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:371 / 382
页数:12
相关论文
共 50 条
  • [41] NUMERICAL COMPARISON OF ITERATIVE AND FUNCTIONAL-ANALYTICAL ALGORITHMS FOR INVERSE ACOUSTIC SCATTERING
    Shurup, A. S.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2022, 10 (01): : 79 - 99
  • [42] A COMPARATIVE STUDY OF TWO GLOBALLY CONVERGENT NUMERICAL METHODS FOR ACOUSTIC TOMOGRAPHY
    Klibanov, Michael, V
    Timonov, Alexandre
    COMMUNICATIONS ON ANALYSIS AND COMPUTATION, 2023, 1 (01): : 12 - 31
  • [43] Numerical simulation on the acoustic wave scattering and fluid perturbations inside confined orifice flow
    Chen, Wenyu
    Wang, Peng
    Liu, Yingzheng
    INTERNATIONAL JOURNAL OF AEROACOUSTICS, 2023, 22 (3-4) : 321 - 350
  • [44] Acoustic wave scattering by two dimensional inclusion with irregular shape in an ideal fluid
    Khoo, Boo Cheong
    Liu, Gang
    Jayathilake, Pahala G.
    INTERNATIONAL CONGRESS ON ULTRASONICS (GDANSK 2011), 2012, 1433 : 43 - 46
  • [45] Generalized eigenfunction expansion and singularity expansion methods for two-dimensional acoustic time-domain wave scattering problems
    Wilks, B.
    Meylan, M. H.
    Montiel, F.
    Wakes, S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 480 (2297):
  • [46] Fictitious domain methods for the numerical solution of three-dimensional acoustic scattering problems
    Heikkola, E
    Kuznetsov, YA
    Lipnikov, KN
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 1999, 7 (03) : 161 - 183
  • [47] Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering
    Chandler-Wilde, Simon N.
    Graham, Ivan G.
    Langdon, Stephen
    Spence, Euan A.
    ACTA NUMERICA, 2012, 21 : 89 - 305
  • [48] Numerical methods for wave scattering phenomena by means of different boundary integral formulations
    Nolte, Bodo
    Schaefer, Ingo
    Ehrlich, Jan
    Ochmann, Martin
    Burgschweiger, Ralf
    Marburg, Steffen
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2007, 15 (04) : 495 - 529
  • [49] SCATTERING PHENOMENA IN ACOUSTIC WAVE PROPAGATION
    WELSBY, VG
    JOURNAL OF SOUND AND VIBRATION, 1968, 8 (01) : 64 - &
  • [50] Acoustic wave scattering by an ellipsoidal shell
    Veksler, ND
    Dubus, B
    Lavie, A
    ACOUSTICAL PHYSICS, 1999, 45 (01) : 46 - 51