Improvement of the electrochemical performance of LiMn2O4 cathode active material by lithium borosilicate (LBS) surface coating for lithium-ion batteries

被引:25
|
作者
Sahan, Halil [1 ]
Goktepe, Huseyin [1 ]
Patat, Saban [1 ]
Ulgen, Ahmet [1 ]
机构
[1] Erciyes Univ, Fac Sci, Dept Chem, TR-38039 Kayseri, Turkey
关键词
Electrode materials; Coating materials; Chemical synthesis; Electrochemical reactions; X-ray diffraction; Scanning electron microscopy (SEM); EMULSION DRYING METHOD; LI-MN-O; CYCLING STABILITY; MANGANESE SPINELS; CAPACITY LOSSES; CELLS; CYCLABILITY; TEMPERATURE; DISSOLUTION; VOLTAGE;
D O I
10.1016/j.jallcom.2011.01.054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The LBS coating on the surface of spinel LiMn2O4 powder was carried out using the solid-state method, followed by heating at 425 degrees C for 5 h in air. The powder X-ray diffraction pattern of the LBS-coated spinel LiMn2O4 showed that the LBS coating medium was not incorporated in the spinel bulk structure. The SEM result showed that the LBS coating particles were homogeneously distributed on the surface of the LiMn2O4 powder particles. The effect of the lithium borosilicate (LBS) coating on the charge-discharge cycling performance of spinel powder (LiMn2O4) was studied in the range of 3.5-4.5 V at 1C. The electrochemical results showed that LBS-coated spinel exhibited a more stable cycle performance than bare spinel. The capacity retention of LBS-coated spinel was more than 93.3% after 70 cycles at room temperature, which was maintained at 71.6% after 70 cycles at 55 degrees C. The improvement of electrochemical performance may be attributed to suppression of Mn2+ dissolution into the electrolyte via the LBS glass layer. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4235 / 4241
页数:7
相关论文
共 50 条
  • [21] Performance improvement of LiMn2O4 as cathode material for lithium ion battery with bismuth modification
    Tan, C. L.
    Zhou, H. J.
    Li, W. S.
    Hou, X. H.
    Lue, D. S.
    Xu, M. Q.
    Huang, Q. M.
    JOURNAL OF POWER SOURCES, 2008, 184 (02) : 408 - 413
  • [22] Truncated octahedral LiMn2O4 cathode for high-performance lithium-ion batteries
    Hwang, Bo-Mi
    Kim, Si-Jin
    Lee, Young-Woo
    Park, Han-Chul
    Kim, Da-Mi
    Park, Kyung-Won
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 158 : 138 - 143
  • [23] Effect of AIP coating on electrochemical properties of LiMn2O4 cathode material for lithium ion battery
    Feng, Xiaoyu
    Zhang, Jianxin
    Yin, Longwei
    MATERIALS RESEARCH BULLETIN, 2016, 74 : 421 - 424
  • [24] LiMn2O4 for 4 V lithium-ion batteries
    Manev, V
    Banov, B
    Momchilov, A
    Nassalevskaa, A
    JOURNAL OF POWER SOURCES, 1995, 57 (1-2) : 99 - 103
  • [25] LiMn2O4 for 4 V lithium-ion batteries
    Bulgarian Acad of Sciences, Sofia, Bulgaria
    J Power Sources, 1-2 (99-103):
  • [26] Synthesis and Electrochemical Property of LiMn2O4 Porous Hollow Nanofiber as Cathode for Lithium-Ion Batteries
    Duan, Lianfeng
    Zhang, Xueyu
    Yue, Kaiqiang
    Wu, Yue
    Zhuang, Jian
    Lu, Wei
    NANOSCALE RESEARCH LETTERS, 2017, 12
  • [27] Synthesis and electrochemical properties of nanostructured LiMn2O4 for lithium-ion batteries
    Li, Xueliang
    Xiang, Ruming
    Su, Tao
    Qian, Yitai
    MATERIALS LETTERS, 2007, 61 (17) : 3597 - 3600
  • [28] Synthesis and Electrochemical Property of LiMn2O4 Porous Hollow Nanofiber as Cathode for Lithium-Ion Batteries
    Lianfeng Duan
    Xueyu Zhang
    Kaiqiang Yue
    Yue Wu
    Jian Zhuang
    Wei Lü
    Nanoscale Research Letters, 2017, 12
  • [29] Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries
    Gao, Xuefeng
    Sha, Yujing
    Lin, Qian
    Cai, Rui
    Tade, Moses O.
    Shao, Zongping
    JOURNAL OF POWER SOURCES, 2015, 275 : 38 - 44
  • [30] EFFECT OF THE AMOUNT OF WATER ON THE SYNTHESIS OF LiMn2O4, USED AS CATHODE MATERIAL IN LITHIUM-ION BATTERIES
    Herrera, F.
    Yedinak, E.
    Cabellero, A.
    Vargas, O.
    Gautier, J. L.
    JOURNAL OF THE CHILEAN CHEMICAL SOCIETY, 2015, 60 (01): : 2867 - 2870