Integrated Gallium Nitride Nonlinear Photonics

被引:69
作者
Zheng, Yanzhen [1 ]
Sun, Changzheng [1 ]
Xiong, Bing [1 ]
Wang, Lai [1 ]
Hao, Zhibiao [1 ]
Wang, Jian [1 ]
Han, Yanjun [1 ]
Li, Hongtao [1 ]
Yu, Jiadong [1 ]
Luo, Yi [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRis, Dept Elect Engn, Beijing 100084, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
frequency combs; GaN; Kerr solitons; nanophotonics; nonlinear optics; PARAMETRIC OSCILLATION; FREQUENCY COMBS; MICRORESONATORS; KERR;
D O I
10.1002/lpor.202100071
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Gallium nitride (GaN) as a wide bandgap material is widely used in solid-state lighting. Thanks to its high nonlinearity and high refractive index contrast, GaN-on-insulator (GaNOI) is also a promising platform for nonlinear optical applications. Despite its intriguing optical proprieties, nonlinear applications of GaN are rarely studied owing to the relatively high optical loss of GaN waveguides (typically approximate to 2 dB cm(-1)). In this paper, GaNOI microresonators with intrinsic quality factor over 2.5 million are reported, corresponding to an optical loss of 0.17 dB cm(-1). Parametric oscillation threshold power as low as 6.2 mW is demonstrated, and the experimentally extracted nonlinear index of GaN at telecom wavelengths is estimated to be n(2) = 1.4 x 10(-18) m(2) W-1, which is several times larger than that of commonly used platform such as Si3N4, LiNbO3, and AlN. Single soliton generation in GaN is implemented by an auxiliary laser pumping scheme, so as to mitigate the high thermorefractive effect in GaN. The large intrinsic nonlinear refractive index, together with its broadband transparency window and high refractive index contrast, make GaNOI a promising platform for chip-scale nonlinear applications.
引用
收藏
页数:6
相关论文
共 30 条
[1]  
Bowers, 2020, AVS QUANTUM SCI, V2
[2]   Optical dispersion and phase matching in gallium nitride and aluminum nitride [J].
Bowman, Steven R. ;
Brown, Christopher G. ;
Taczak, Benjamin .
OPTICAL MATERIALS EXPRESS, 2018, 8 (04) :1091-1099
[3]   Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J].
Brasch, V. ;
Geiselmann, M. ;
Herr, T. ;
Lihachev, G. ;
Pfeiffer, M. H. P. ;
Gorodetsky, M. L. ;
Kippenberg, T. J. .
SCIENCE, 2016, 351 (6271) :357-360
[4]   Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state [J].
Brasch, Victor ;
Geiselmann, Michael ;
Pfeiffer, Martin H. P. ;
Kippenberg, Tobias J. .
OPTICS EXPRESS, 2016, 24 (25) :29313-29321
[5]   Electrochemically sliced low loss AlGaN optical microresonators [J].
Bruch, Alexander W. ;
Xiong, Kanglin ;
Jung, Hojoong ;
Guo, Xiang ;
Zhang, Cheng ;
Han, Jung ;
Tang, Hong X. .
APPLIED PHYSICS LETTERS, 2017, 110 (02)
[6]   Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films [J].
Bruch, Alexander W. ;
Xiong, Chi ;
Leung, Benjamin ;
Poot, Menno ;
Han, Jung ;
Tang, Hong X. .
APPLIED PHYSICS LETTERS, 2015, 107 (14)
[7]   Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators [J].
Chang, Lin ;
Xie, Weiqiang ;
Shu, Haowen ;
Yang, Qi-Fan ;
Shen, Boqiang ;
Boes, Andreas ;
Peters, Jon D. ;
Jin, Warren ;
Xiang, Chao ;
Liu, Songtao ;
Moille, Gregory ;
Yu, Su-Peng ;
Wang, Xingjun ;
Srinivasan, Kartik ;
Papp, Scott B. ;
Vahala, Kerry ;
Bowers, John E. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model [J].
Coen, Stephane ;
Randle, Hamish G. ;
Sylvestre, Thibaut ;
Erkintalo, Miro .
OPTICS LETTERS, 2013, 38 (01) :37-39
[9]   High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators [J].
Gong, Zheng ;
Bruch, Alexander ;
Shen, Mohan ;
Guo, Xiang ;
Jung, Hojoong ;
Fan, Linran ;
Liu, Xianwen ;
Zhang, Liang ;
Wang, Junxi ;
Li, Jinmin ;
Yan, Jianchang ;
Tang, Hong X. .
OPTICS LETTERS, 2018, 43 (18) :4366-4369
[10]   Optical parametric oscillation in silicon carbide nanophotonics [J].
Guidry, Melissa A. ;
Yang, Ki Youl ;
Lukin, Daniil M. ;
Markosyan, Ashot ;
Yang, Joshua ;
Fejer, Martin M. ;
Vuckovic, Jelena .
OPTICA, 2020, 7 (09) :1139-1142