Bismut connection on Vaisman manifolds

被引:8
作者
Andrada, Adrian [1 ]
Villacampa, Raquel [2 ]
机构
[1] Univ Nacl Cordoba, CONICET, FaMAF CIEM, Av Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba, Argentina
[2] Ctr Univ Def Zaragoza IUMA, Acad Gen Mil, Carretera Huesca S-N, Zaragoza 50090, Spain
关键词
Bismut connection; Holonomy; Locally conformally Kahler manifold; Vaisman manifold; LOCALLY CONFORMAL KAHLER; VANISHING THEOREMS; SOLVMANIFOLDS; METRICS; SPACES;
D O I
10.1007/s00209-022-03108-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The holonomy of the Bismut connection on Vaisman manifolds is studied. We prove that if M-2n is endowed with a Vaisman structure, then the holonomy group of the Bismut connection is contained in U(n - 1). We compute explicitly this group for particular types of manifolds, namely, solvmanifolds and some classical Hopf manifolds.
引用
收藏
页码:1091 / 1126
页数:36
相关论文
共 41 条
[1]  
Alekseevskii D.V., 1975, Math. USSR-Sb., V96, P87
[2]   HOMOGENEOUS SASAKI AND VAISMAN MANIFOLDS OF UNIMODULAR LIE GROUPS [J].
Alekseevsky, D. ;
Hasegawa, K. ;
Kamishima, Y. .
NAGOYA MATHEMATICAL JOURNAL, 2021, 243 :83-96
[3]   Vanishing theorems on Hermitian manifolds [J].
Alexandrov, B ;
Ivanov, S .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 14 (03) :251-265
[4]   A THEOREM ON HOLONOMY [J].
AMBROSE, W ;
SINGER, IM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 75 (NOV) :428-443
[5]   VAISMAN SOLVMANIFOLDS AND RELATIONS WITH OTHER GEOMETRIC STRUCTURES [J].
Andrada, A. ;
Origlia, M. .
ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (01) :117-146
[6]   Lattices in almost abelian Lie groups with locally conformal Kahler or symplectic structures [J].
Andrada, A. ;
Origlia, M. .
MANUSCRIPTA MATHEMATICA, 2018, 155 (3-4) :389-417
[7]  
Angella D., ARXIV
[8]  
Angella D., 2018, ARXIV
[9]   Griffiths positivity for Bismut curvature and its behaviour along Hermitian curvature flows [J].
Barbaro, Giuseppe .
JOURNAL OF GEOMETRY AND PHYSICS, 2021, 169
[10]   Vaisman nilmanifolds [J].
Bazzoni, Giovanni .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (05) :824-830