RATIONAL POINTS ON LINEAR SLICES OF DIAGONAL HYPERSURFACES

被引:14
作者
Bruedern, Joerg [1 ]
Robert, Olivier [2 ,3 ]
机构
[1] Math Inst, D-37073 Gottingen, Germany
[2] Univ Lyon, F-42000 St Etienne, France
[3] Univ St Etienne, Inst Camille Jordan, CNRS UMR 5208, F-42000 St Etienne, France
关键词
NONARY CUBIC FORMS; SIMULTANEOUS ADDITIVE EQUATIONS; MEAN-VALUE THEOREM; 2 HTH POWERS; WARING PROBLEM; SIEVE METHOD; NUMBERS; SUMS;
D O I
10.1215/00277630-2891245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An asymptotic formula is obtained for the number of rational points of bounded height on the class of varieties described in the title line. The formula is proved via the Hardy-Littlewood method, and along the way we establish two new results on Weyl sums that are of some independent interest.
引用
收藏
页码:51 / 100
页数:50
相关论文
共 37 条
[1]  
[Anonymous], 2009, Analytic number theory. Essays in honour of K. F. Roth
[3]   A REDUCTION TECHNIQUE IN WARINGS PROBLEM .1. [J].
BOKLAN, KD .
ACTA ARITHMETICA, 1993, 65 (02) :147-161
[4]   Rational points on quartic hypersurfaces [J].
Browning, T. D. ;
Heath-Brown, D. R. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 629 :37-88
[5]  
BRUDERN J, 1992, ACTA ARITH, V62, P125
[6]   A PROBLEM IN ADDITIVE NUMBER-THEORY [J].
BRUDERN, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :27-33
[7]   ON HASSE PRINCIPLE FOR CUBIC SURFACES [J].
CASSELS, JWS ;
GUY, MJT .
MATHEMATIKA, 1966, 13 (26P2) :111-&
[8]   ON HUA ESTIMATES FOR EXPONENTIAL-SUMS [J].
CHALK, JHH .
MATHEMATIKA, 1987, 34 (68) :115-123
[9]   CUBIC EQUATIONS OF ADDITIVE TYPE [J].
DAVENPORT, H ;
LEWIS, DJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 261 (1117) :97-+
[10]   SIMULTANEOUS EQUATIONS OF ADDITIVE TYPE [J].
DAVENPORT, H ;
LEWIS, DJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 264 (1155) :557-+