Live-cell PCR and one-step purification streamline DNA engineering

被引:4
作者
Lyozin, George T. [1 ,2 ]
Brunelli, Luca [1 ,2 ,3 ]
机构
[1] Univ Nebraska Med Ctr, Dept Pediat, DRC 2,Rm 4034,601 S Saddle Creek Rd, Omaha, NE 68106 USA
[2] Univ Nebraska Med Ctr, Dept Genet Cell Biol & Anat, Omaha, NE 68106 USA
[3] Univ Utah, Dept Pediat Neonatol, Salt Lake City, UT USA
关键词
colony PCR; DNA gap repair; DNA purification; melting curve analysis; ESCHERICHIA-COLI;
D O I
10.1096/fj.201902261R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In vivo DNA engineering such as recombineering (recombination-mediated genetic engineering) and DNA gap repair typically involve growing Escherichia coli (E coli) containing plasmids, followed by plasmid DNA extraction and purification prior to downstream PCR-mediated DNA modifications and DNA sequencing. We previously demonstrated that crude cell lysates could be used for some limited downstream DNA applications. Here, we show how live E coli cell PCR and one-step LiCl-isopropanol purification can streamline DNA engineering. In DNA gap repair, live-cell PCR allowed the convenient elimination of clones containing background plasmids prior to DNA sequencing. Live-cell PCR also enabled the generation of specific DNA sequences for DNA engineering up to 11 kilo base pairs in length and with up to 80 base pair terminal non-homology. Using gel electrophoresis and DNA melting curve analysis, we showed that LiCl-isopropanol DNA precipitation removed primers and small, nonspecific PCR products from live-cell PCR products in only similar to 10-minutes. DNA sequencing of purified products yielded Phred quality scores values of similar to 55%. These data indicate that live-cell PCR and LiCl-isopropanol DNA precipitation are ideal to prepare DNA for sequencing and other downstream DNA applications, and might therefore accelerate high-throughput DNA engineering pipelines.
引用
收藏
页码:3448 / 3460
页数:13
相关论文
共 24 条
[1]   A SIMPLE METHOD FOR QUANTITATIVE ISOLATION OF UNDEGRADED HIGH MOLECULAR WEIGHT RIBONUCLEIC ACID [J].
BARLOW, JJ ;
MATHIAS, AP ;
GAMMACK, DB ;
WILLIAMSON, R .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1963, 13 (01) :61-&
[2]  
BIRNBOIM HC, 1979, NUCLEIC ACIDS RES, V7, P1513
[3]   Recombineering: A powerful new tool for mouse functional genomics [J].
Copeland, NG ;
Jenkins, NA ;
Court, DL .
NATURE REVIEWS GENETICS, 2001, 2 (10) :769-779
[4]   Base-calling of automated sequencer traces using phred.: II.: Error probabilities [J].
Ewing, B ;
Green, P .
GENOME RESEARCH, 1998, 8 (03) :186-194
[5]   Dielectric constant and ionic strength effects on DNA precipitation [J].
Flock, S ;
Labarbe, R ;
Houssier, C .
BIOPHYSICAL JOURNAL, 1996, 70 (03) :1456-1465
[6]  
Fowler DM, 2014, NAT METHODS, V11, P801, DOI [10.1038/NMETH.3027, 10.1038/nmeth.3027]
[7]   Optimization of isopropanol and ammonium sulfate precipitation steps in the purification of plasmid DNA [J].
Freitas, S. S. ;
Santos, J. A. L. ;
Prazeres, D. M. F. .
BIOTECHNOLOGY PROGRESS, 2006, 22 (04) :1179-1186
[8]   The power of multiplexed functional analysis of genetic variants [J].
Gasperini, Molly ;
Starita, Lea ;
Shendure, Jay .
NATURE PROTOCOLS, 2016, 11 (10) :1782-1787
[9]  
Green MichaelR., 2012, Molecular cloning: a laboratory manual, V1
[10]   Decoding enhancers using massively parallel reporter assays [J].
Inoue, Fumitaka ;
Ahituv, Nadav .
GENOMICS, 2015, 106 (03) :159-164