Chaotic binary Group Search Optimizer for feature selection
被引:60
作者:
Abualigah, Laith
论文数: 0引用数: 0
h-index: 0
机构:
Amman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
Univ Sains Malaysia, Sch Comp Sci, George Town 11800, MalaysiaAmman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
Abualigah, Laith
[1
,2
]
Diabat, Ali
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ Abu Dhabi, Div Engn, Abu Dhabi 129188, U Arab Emirates
NYU, Tandon Sch Engn, Dept Civil & Urban Engn, Brooklyn, NY 11201 USAAmman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
Diabat, Ali
[3
,4
]
机构:
[1] Amman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
[2] Univ Sains Malaysia, Sch Comp Sci, George Town 11800, Malaysia
[3] New York Univ Abu Dhabi, Div Engn, Abu Dhabi 129188, U Arab Emirates
[4] NYU, Tandon Sch Engn, Dept Civil & Urban Engn, Brooklyn, NY 11201 USA
Feature selection (FS) is recognized as one of the majority public and challenging problems in the Machine Learning domain. FS can be examined as an optimization problem that needs an effective optimizer to determine its optimal subset of more informative features. This paper proposes a wrapper FS method that combines chaotic maps (CMs) and binary Group Search Optimizer (GSO) called CGSO, which is used to solve the FS problem. In this method, five chaotic maps are incorporated with the GSO algorithm's main procedures, namely, Logistic, Piecewise, Singer, Sinusoidal, and Tent. The GSO algorithm is used as a search strategy, while k-NN is employed as an induction algorithm. The objective function is to integrate three main objectives: maximizing the classification accuracy value, minimizing the number of selected features, and minimizing the complexity of generated k-NN models. To evaluate the proposed methods' performance, twenty well-known UCI datasets are used and compared with other well-known published methods in the literature. The obtained results reveal the superiority of the proposed methods in outperforming other well-known methods, especially when using binary GSO with Tent CM. Finally, it is a beneficial method to be utilized in systems that require FS pre-processing.
机构:
Amman Arab Univ, Fac Comp Sci & Informat, Amman 11953, JordanAmman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
Abualigah, Laith
;
Diabat, Ali
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ Abu Dhabi, Div Engn, Abu Dhabi 129188, U Arab Emirates
NYU, Tandon Sch Engn, Dept Civil & Urban Engn, Brooklyn, NY 11201 USAAmman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
Diabat, Ali
;
Mirjalili, Seyedali
论文数: 0引用数: 0
h-index: 0
机构:
Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimisat, Brisbane, Qld, Australia
Yonsei Univ, YFL Yonsei Frontier Lab, Seoul, South KoreaAmman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
Mirjalili, Seyedali
;
论文数: 引用数:
h-index:
机构:
Elaziz, Mohamed Abd
;
Gandomi, Amir H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Technol Sydney, Fac Engn & Informat Technol, Ultimo, NSW 2007, AustraliaAmman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
机构:
Amman Arab Univ, Fac Comp Sci & Informat, Amman 11953, JordanAmman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
Abualigah, Laith
;
Diabat, Ali
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ Abu Dhabi, Div Engn, Abu Dhabi 129188, U Arab Emirates
NYU, Tandon Sch Engn, Dept Civil & Urban Engn, Brooklyn, NY 11201 USAAmman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
Diabat, Ali
;
Mirjalili, Seyedali
论文数: 0引用数: 0
h-index: 0
机构:
Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimisat, Brisbane, Qld, Australia
Yonsei Univ, YFL Yonsei Frontier Lab, Seoul, South KoreaAmman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan
Mirjalili, Seyedali
;
论文数: 引用数:
h-index:
机构:
Elaziz, Mohamed Abd
;
Gandomi, Amir H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Technol Sydney, Fac Engn & Informat Technol, Ultimo, NSW 2007, AustraliaAmman Arab Univ, Fac Comp Sci & Informat, Amman 11953, Jordan