ON THE RELATIVE PREDICTIVE VALUE OF THE NEW SPECTRAL BANDS IN THE WORLDVIEW-2 SENSOR

被引:37
作者
Marchisio, G. [1 ]
Pacifici, F. [1 ]
Padwick, C. [1 ]
机构
[1] DigitalGlobe, Res & Dev, Longmont, CO 80503 USA
来源
2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2010年
关键词
WorldView-2; multispectral; land cover classification; machine learning; spectral predictors;
D O I
10.1109/IGARSS.2010.5649771
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We apply a comparative data mining framework to the multispectral classification of WorldView-2 (WV2) imagery. Our goal is two-fold. First, we want to identify land covers for which the combination of extended spectral coverage and high spatial resolution provide a distinctive advantage in classification accuracy. Second, we perform predictor analyses to determine which combinations of bands are more effective in resolving individual targets. This experimental approach provides a basis for building a spectral atlas that can offer guidance on the optimal combination of WV2 spectral bands for different application areas.
引用
收藏
页码:2723 / 2726
页数:4
相关论文
共 5 条
[1]  
[Anonymous], 2022, INTRO RECURSIVE PART
[2]  
Breiman L., 2001, MACH LEARN, V45, P5
[3]  
Herold M., 2002, P 3 S REM SENS URB A
[4]  
Shafri H.Z.M., 2006, AM J APPL SCI3, V6, P1864, DOI DOI 10.3844/AJASSP.2006.1864.1871
[5]  
YACOUB M, 1996, INTELLIGENT ENG SYST, P527