The law of the Iterated Logarithm for random interval homeomorphisms

被引:3
作者
Czudek, Klaudiusz [1 ]
Szarek, Tomasz [2 ]
Wojewodka-Sciazko, Hanna [3 ,4 ]
机构
[1] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Gdansk Univ Technol, Fac Phys & Appl Math, Ul Gabriela Narutowicza 11-12, PL-80288 Gdansk, Poland
[3] Univ Silesia Katowice, Inst Math, Bankowa 14, PL-40007 Katowice, Poland
[4] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
关键词
D O I
10.1007/s11856-021-2235-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A proof of the law of the iterated logarithm for random homeomorphisms of the interval is given.
引用
收藏
页码:47 / 53
页数:7
相关论文
共 50 条
[21]   CAPACITY OF THE RANGE OF RANDOM WALK: THE LAW OF THE ITERATED LOGARITHM [J].
Dembo, Amir ;
Okada, Izumi .
ANNALS OF PROBABILITY, 2024, 52 (05) :1954-1991
[22]   A law of the iterated logarithm for stable processes in random scenery [J].
Khoshnevisan, D ;
Lewis, TM .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 74 (01) :89-121
[23]   The law of the iterated logarithm for algorithmically random Brownian motion [J].
Kjos-Hanssen, Bjorn ;
Nerode, Anil .
LOGICAL FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, 4514 :310-+
[24]   Generalization of the Law of the Iterated Logarithm for Associated Random Fields [J].
Shashkin, A. P. .
MATHEMATICAL NOTES, 2015, 98 (5-6) :831-842
[25]   LAW OF ITERATED LOGARITHM FOR DOUBLE SEQUENCES OF RANDOM VARIABLES [J].
TOMKINS, RJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 30 (04) :303-314
[26]   On the Law of the Iterated Logarithm for Sums of Dependent Random Variables [J].
Petrov V.V. .
Journal of Mathematical Sciences, 2021, 258 (6) :894-896
[27]   THE LAW OF THE ITERATED LOGARITHM FOR IDENTICALLY DISTRIBUTED RANDOM VARIABLES [J].
FELLER, W .
ANNALS OF MATHEMATICS, 1946, 47 (04) :631-638
[28]   LAW OF ITERATED LOGARITHM FOR RANGE OF RANDOM-WALK [J].
JAIN, NC ;
PRUITT, WE .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (05) :1692-&
[29]   LAW OF ITERATED LOGARITHM FOR SUBSEQUENCES OF RANDOM-VARIABLES [J].
BERKES, I .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 30 (03) :209-215
[30]   A CONVERSE TO THE LAW OF THE ITERATED LOGARITHM FOR A RANDOM-WALK [J].
MARTIKAINEN, AI .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1980, 25 (02) :361-362