Morphology-controlled fabrication of nanostructured WO3 thin films by magnetron sputtering with glancing angle deposition for enhanced efficiency photo-electrochemical water splitting

被引:23
作者
Limwichean, S. [1 ]
Kasayapanand, N. [1 ]
Ponchio, C. [2 ,3 ]
Nakajima, H. [4 ]
Patthanasettakul, V [5 ]
Eiamchai, P. [5 ]
Meng, G. [6 ,7 ]
Horprathum, M. [5 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Sch Energy Environm & Mat, Energy Technol Program, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Rajamangala Univ Technol Thanyaburi, Fac Sci & Technol, Dept Chem, Pathum Thani 12110, Thailand
[3] Rajamangala Univ Technol Thanyaburi, Fac Sci & Technol, Adv Mat Design & Dev AMDD Res Unit, Pathum Thani 12110, Thailand
[4] Synchrotron Light Res Inst, Maung 30000, Nakhon Ratchasi, Thailand
[5] Natl Elect & Comp Technol Ctr, Spectroscop & Sensing Devices Res Grp, Optoelectrochem Sensing Res Team, Pathum Thani 12120, Thailand
[6] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Anhui Prov Key Lab Photon Devices & Mat, Hefei 230031, Peoples R China
[7] Chinese Acad Sci, Key Lab Photovolta & Energy Conservat Mat, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
关键词
WO3; GLAD; Magnetron sputtering; PEC; Nanostructure; TUNGSTEN-OXIDE; MONOCLINIC WO3; CRYSTAL FACET; FACILE FABRICATION; ION IRRADIATION; WORK FUNCTION; METAL-OXIDES; NANORODS; PHOTOANODES; OXIDATION;
D O I
10.1016/j.ceramint.2021.08.359
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, the tungsten trioxide (WO3) nanostructure thin films with different morphologies are firstly fabricated by magnetron sputtering with glancing angle deposition technique (MS-GLAD), followed by the post annealed treatment process in air ambient for 2 h. It is demonstrated that the geometry of MS-GLAD setup, mainly substrate position, played a crucial role in determining the morphology, crystallinity, optical transmittance, and photo-electrochemical (PEC) performance of the WO3 nanostructured thin film. With the different substrate positions in the MS-GLAD system, the WO3 nanorod film layer could be precisely changed to combine an underlying dense layer with a nanorod layer and then nanocolumnar film. Moreover, the prepared samples' chemical composition and work function are studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), respectively. The combining WO3 nanostructure produced high PEC efficiency compared to the single layer of the WO3 nanorods sample and the dense WO3 thin film sample. Thus, morphology-controlled nanostructure film based on the MS-GLAD technique in our study provides a simple approach to enhance the photo-anode for PEC water splitting application.
引用
收藏
页码:34455 / 34462
页数:8
相关论文
共 76 条
  • [21] Microwave-assisted nonaqueous synthesis of WO3 nanoparticles for crystallographically oriented photoanodes for water splitting
    Hilaire, Sandra
    Sueess, Martin J.
    Kraenzlin, Niklaus
    Bienkowski, Krzysztof
    Solarska, Renata
    Augustynski, Jan
    Niederberger, Markus
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (48) : 20530 - 20537
  • [22] Ultrasensitive Hydrogen Sensor Based on Pt-Decorated WO3 Nanorods Prepared by Glancing-Angle dc Magnetron Sputtering
    Horprathum, M.
    Srichaiyaperk, T.
    Samransuksamer, B.
    Wisitsoraat, A.
    Eiamchai, P.
    Limwichean, S.
    Chananonnawathorn, C.
    Aiempanakit, K.
    Nuntawong, N.
    Patthanasettakul, V.
    Oros, C.
    Porntheeraphat, S.
    Songsiriritthigul, P.
    Nakajima, H.
    Tuantranont, A.
    Chindaudom, P.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) : 22051 - 22060
  • [23] NO2-sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering
    Horprathum, M.
    Limwichean, K.
    Wisitsoraat, A.
    Eiamchai, P.
    Aiempanakit, K.
    Limnonthakul, P.
    Nuntawong, N.
    Pattantsetakul, V.
    Tuantranont, A.
    Chindaudom, P.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2013, 176 : 685 - 691
  • [24] Phenomenology of the effect of ion irradiation on the work function of metals
    Horvath, Akos
    Nagy, Norbert
    Vertesy, Gabor
    Schiller, Robert
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2020, 466 : 12 - 16
  • [25] Deposition of WO3 doped amorphous hydrogenated carbon film by using liquid phase electrodeposition technique and its mechanical properties
    Huang, Deming
    Wang, Liping
    Xue, Qunji
    [J]. SOLID STATE SCIENCES, 2011, 13 (03) : 653 - 657
  • [26] Synthesis and characterization of WO3 nanostructures prepared by an aged-hydrothermal method
    Huirache-Acuna, R.
    Paraguay-Delgado, F.
    Albiter, M. A.
    Lara-Romero, J.
    Martinez-Sanchez, R.
    [J]. MATERIALS CHARACTERIZATION, 2009, 60 (09) : 932 - 937
  • [27] Directing WO3 crystal growth towards artificial photosynthesis favorable {002} plane via aluminum incorporation in the lattice for enhanced water splitting
    Kalanur, Shankara S.
    Seo, Hyungtak
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 864
  • [28] Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity
    Kalanur, Shankara Sharanappa
    Hwang, Yun Jeong
    Chae, Sang Youn
    Joo, Oh Shim
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (10) : 3479 - 3488
  • [29] Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition
    Karabacak, T
    Wang, GC
    Lu, TM
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2004, 22 (04): : 1778 - 1784
  • [30] Layered WO3/TiO2 nanostructures with enhanced photocurrent densities
    Khare, Chinmay
    Sliozberg, Kirill
    Meyer, Robert
    Savan, Alan
    Schuhmann, Wolfgang
    Ludwig, Alfred
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (36) : 15954 - 15964