Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators

被引:60
作者
Thieme, Horst R. [1 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
关键词
Volterra Lyapunov function (Global) compact attractor; Uniform persistence; Extinction; Threshold behavior; Nonlinear incidence; SIR EPIDEMIC MODEL; NONLINEAR INCIDENCE; INTRACELLULAR DELAYS; ASYMPTOTIC STABILITY; DYNAMICS; INFECTION; BEHAVIOR; TRANSMISSION; PERSISTENCE; SYSTEMS;
D O I
10.1016/j.jde.2011.01.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The global stability of the endemic equilibrium is shown for an endemic model with infinite-dimensional population structure using a Volterra like Lyapunov function and the Krein-Rutman theorem. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3772 / 3801
页数:30
相关论文
共 65 条
[1]  
Adda P, 2007, DISCRETE CONT DYN-B, V8, P1
[2]  
[Anonymous], MODELING DYNAMICS IN
[3]  
[Anonymous], 1968, Functional Analysis
[4]  
[Anonymous], APPL MATH C IN PRESS
[5]  
[Anonymous], LIFE SCI RES REP
[6]  
[Anonymous], FIELDS I COMMUN AM M
[7]  
[Anonymous], LIFE SCI RES REP
[8]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[9]   Global asymptotic stability of an SIR epidemic model with distributed time delay [J].
Beretta, E ;
Hara, T ;
Ma, WB ;
Takeuchi, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) :4107-4115
[10]   THE DYNAMICS OF INSECT-PATHOGEN INTERACTIONS IN STAGE-STRUCTURED POPULATIONS [J].
BRIGGS, CJ ;
GODFRAY, HCJ .
AMERICAN NATURALIST, 1995, 145 (06) :855-887