Microlocal partition of energy for linear wave or Schrodinger equations

被引:2
|
作者
Delort, Jean -Marc [1 ]
机构
[1] Univ Paris XIII Sorbonne Paris Nord, Dept Math, Villetaneuse, France
基金
美国国家科学基金会;
关键词
wave equation; Schr?dinger equation; channels of energy; microlocal analysis;
D O I
10.2140/tunis.2022.4.329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a microlocal partition of energy for solutions to linear half-wave or Schrodinger equations in any space dimension. This extends well-known (local) results valid for the wave equation outside the wave cone, and allows us in particular, in the case of even dimension, to generalize the radial estimates due to Cote, Kenig and Schlag to nonradial initial data.
引用
收藏
页码:329 / 385
页数:58
相关论文
共 50 条
  • [31] Remarks on infinite energy solutions of nonlinear wave equations
    Liu, Shumao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 4231 - 4240
  • [32] The energy space and norm growth for abstract wave equations
    Goldstein, JA
    Wacker, M
    APPLIED MATHEMATICS LETTERS, 2003, 16 (05) : 767 - 772
  • [33] ON THE GLOBAL WELL-POSEDNESS OF ENERGY-CRITICAL SCHRODINGER EQUATIONS IN CURVED SPACES
    Ionescu, Alexandru D.
    Pausader, Benoit
    Staffilani, Gigliola
    ANALYSIS & PDE, 2012, 5 (04): : 705 - 746
  • [34] The quasi-linear method of fundamental solution applied to non-linear wave equations
    Fallahi, Mahmood
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (08) : 1183 - 1188
  • [35] Efficient time integration for discontinuous Galerkin approximations of linear wave equations
    Hochbruck, Marlis
    Pazur, Tomislav
    Schulz, Andreas
    Thawinan, Ekkachai
    Wieners, Christian
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (03): : 237 - 259
  • [36] REDUCED DIFFERENTIAL TRANSFORM METHOD FOR SOLVING LINEAR AND NONLINEAR WAVE EQUATIONS
    Keskin, Y.
    Oturanc, G.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2010, 34 (A2): : 113 - 122
  • [37] A Microlocal Investigation of Stochastic Partial Differential Equations for Spinors with an Application to the Thirring Model
    Bonicelli, Alberto
    Costeri, Beatrice
    Dappiaggi, Claudio
    Rinaldi, Paolo
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2024, 27 (03)
  • [38] APPROXIMATION OF CONTROLS FOR LINEAR WAVE EQUATIONS: A FIRST ORDER MIXED FORMULATION
    Montaner, Santiago
    Munch, Arnaud
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2019, 9 (04) : 729 - 758
  • [39] NULL CONTROLLABILITY OF LINEAR HEAT AND WAVE EQUATIONS WITH NONLOCAL SPATIAL TERMS
    Fernandez-Cara, Enrique
    Lu, Qi
    Zuazua, Enrique
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (04) : 2009 - 2019
  • [40] Uniform Energy Decay for Wave Equations with Unbounded Damping Coefficients
    Ikehata, Ryo
    Takeda, Hiroshi
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2020, 63 (01): : 133 - 152