Gauss-Newton method for image reconstruction in diffuse optical tomography

被引:178
|
作者
Schweiger, M
Arridge, SR
Nissilä, I
机构
[1] UCL, Dept Comp Sci, London WC1E 6BT, England
[2] Helsinki Univ Technol, Biomed Engn Lab, FIN-02150 Espoo, Finland
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2005年 / 50卷 / 10期
基金
英国惠康基金;
关键词
D O I
10.1088/0031-9155/50/10/013
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a regularized Gauss-Newton method for solving the inverse problem of parameter reconstruction from boundary data in frequency-domain diffuse optical tomography. To avoid the explicit formation and inversion of the Hessian which is often prohibitively expensive in terms of memory resources and runtime for large-scale problems, we propose to solve the normal equation at each Newton step by means of an iterative Krylov method, which accesses the Hessian only in the form of matrix-vector products. This allows us to represent the Hessian implicitly by the Jacobian and regularization term. Further we introduce transformation strategies for data and parameter space to improve the reconstruction performance. We present simultaneous reconstructions of absorption and scattering distributions using this method for a simulated test case and experimental phantom data.
引用
收藏
页码:2365 / 2386
页数:22
相关论文
共 50 条
  • [41] A Multiplicative Regularized Gauss-Newton Inversion for Shape and Location Reconstruction
    Mojabi, Puyan
    LoVetri, Joe
    Shafai, Lotfollah
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (12) : 4790 - 4802
  • [42] Newton and Gauss-Newton method in the estimation of nonlinear regression model parameters
    Silva, Edilson M.
    Fruhauf, Ariana C.
    Fernandes, Felipe A.
    Paula, Gustavo S.
    Muniz, Joel A.
    Fernandes, Tales J.
    SIGMAE, 2019, 8 (02): : 728 - 734
  • [43] On convergence rates for the iteratively regularized Gauss-Newton method
    Blaschke, B
    Neubauer, A
    Scherzer, O
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) : 421 - 436
  • [44] Gauss-Newton Method for DEM Co-registration
    Wang, Kunlun
    Zhang, Tonggang
    INTERNATIONAL CONFERENCE ON INTELLIGENT EARTH OBSERVING AND APPLICATIONS 2015, 2015, 9808
  • [45] Convergence of Gauss-Newton's method and uniqueness of the solution
    Chen, JH
    Li, WG
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) : 686 - 705
  • [46] Improved Gauss-Newton method for structural evaluation of pavement
    Matsui, Kunihito
    Sato, Naotoshi
    Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers, 1993, (478 pt 5-21): : 141 - 144
  • [47] On convergence of the Gauss-Newton method for convex composite optimization
    Li, C
    Wang, XH
    MATHEMATICAL PROGRAMMING, 2002, 91 (02) : 349 - 356
  • [48] SHAPE OPTIMIZATION VIA A LEVELSET AND A GAUSS-NEWTON METHOD
    Fehrenbach, Jerome
    de Gournay, Friaric
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [49] THE ITERATED KALMAN FILTER UPDATE AS A GAUSS-NEWTON METHOD
    BELL, BM
    CATHEY, FW
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (02) : 294 - 297
  • [50] On convergence of the Gauss-Newton method for convex composite optimization
    Chong Li
    Xinghua Wang
    Mathematical Programming, 2002, 91 : 349 - 356