Long-read PacBio genome sequencing of four environmental saprophytic Sporothrix species spanning the pathogenic clade

被引:2
|
作者
Du, Weian [1 ]
Giosa, Domenico [2 ]
Wei, Junkang [3 ]
Giuffre, Letterio [2 ]
Shi, Ge [4 ]
El Aamri, Lamya [5 ]
D'Alessandro, Enrico [6 ]
Hafidi, Majida [5 ]
de Hoog, Sybren [7 ]
Romeo, Orazio [2 ]
Huang, Huaiqiu [1 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 3, Dept Dermatol & Venereol, Guangzhou, Guangdong, Peoples R China
[2] Univ Messina, Dept Chem Biol Pharmaceut & Environm Sci, Messina, Italy
[3] Sun Yat Sen Univ, Sch Pharmaceut Sci, Guangzhou, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Affiliated Hosp 6, Med Cosmet & Plast Surg Ctr, Guangzhou, Guangdong, Peoples R China
[5] Moulay Ismail Univ, Dept Biol, Zitoune, Meknes, Morocco
[6] Univ Messina, Dept Vet Sci, Messina, Italy
[7] Radboud Univ Nijmegen, Med Ctr, Ctr Expertise Mycol, Canisius Wilhelmina Hosp, Nijmegen, Netherlands
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Sporothrix phasma; Sporothrix curviconia; Sporothrix protearum; Sporothrix variecibatus; Sporotrichosis; SMRT PacBio sequencing; Long-read sequencing; De novo assembly; Comparative genomics; TRANSFER-RNA GENES;
D O I
10.1186/s12864-022-08736-w
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The genus Sporothrix belongs to the order Ophiostomatales and contains mainly saprobic soil and plant fungi, although pathogenic species capable of causing human infections are also present. The whole-genomes of disease-causing species have already been sequenced and annotated but no comprehensive genomic resources for environmental Sporothrix species are available, thus limiting our understanding of the evolutionary origin of virulence-related genes and pathogenicity. Result: The genome assembly of four environmental Sporothrix species resulted in genome size of similar to 30.9 Mbp in Sporothrix phasma, similar to 35 Mbp in S. curviconia, similar to 38.7 Mbp in S. protearum, and similar to 39 Mbp in S. variecibatus, with a variable gene content, ranging from 8142 (S. phasma) to 9502 (S. variecibatus). The analysis of mobile genetic elements showed significant differences in the content of transposable elements within the sequenced genomes, with the genome of S. phasma lacking several class I and class II transposons, compared to the other Sporothrix genomes investigated. Moreover, the comparative analysis of orthologous genes shared by clinical and environmental Sporothrix genomes revealed the presence of 3622 orthogroups shared by all species, whereas over 4200 genes were species-specific single-copy gene products. Carbohydrate-active enzyme analysis revealed a total of 2608 protein-coding genes containing single and/or multiple CAZy domains, resulting in no statistically significant differences among pathogenic and environmental species. Nevertheless, some families were not found in clinical species. Furthermore, for each sequenced Sporothrix species, the mitochondrial genomes was assembled in a single circular DNA molecule, ranging from 25,765 bp (S. variecibatus) to 58,395 bp (S. phasma). Conclusion: In this study, we present four annotated genome assemblies generated using PacBio SMRT sequencing data from four environmental species: S. curviconia, S. phasma, S. protearum and S. variecibatus with the aim to provide a starting point for future comparative genome evolution studies addressing species diversification, ecological/host adaptation and origin of pathogenic lineages within the genus Sporothrix.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Long-read PacBio genome sequencing of four environmental saprophytic Sporothrix species spanning the pathogenic clade
    Weian Du
    Domenico Giosa
    Junkang Wei
    Letterio Giuffrè
    Ge Shi
    Lamya El Aamri
    Enrico D’Alessandro
    Majida Hafidi
    Sybren de Hoog
    Orazio Romeo
    Huaiqiu Huang
    BMC Genomics, 23
  • [2] Genome analysis of Zoysia japonica 'Yaji' cultivar using PacBio long-read sequencing
    Yang, Dae-Hwa
    Jeong, Ok-Cheol
    Sun, Hyeon-Jin
    Kang, Hong-Gyu
    Lee, Hyo-Yeon
    PLANT BIOTECHNOLOGY REPORTS, 2023, 17 (02) : 275 - 283
  • [3] Genome analysis of Zoysia japonica ‘Yaji’ cultivar using PacBio long-read sequencing
    Dae-Hwa Yang
    Ok-Cheol Jeong
    Hyeon-Jin Sun
    Hong-Gyu Kang
    Hyo-Yeon Lee
    Plant Biotechnology Reports, 2023, 17 : 275 - 283
  • [4] Genome sequencing using long-read sequencing
    McEwen, Juan Guillermo
    Gomez, Oscar Mauricio
    REVISTA DE LA ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS FISICAS Y NATURALES, 2023, 47 (183): : 439 - 444
  • [5] Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing
    Chunman Zuo
    Matthew Blow
    Avinash Sreedasyam
    Rita C. Kuo
    Govindarajan Kunde Ramamoorthy
    Ivone Torres-Jerez
    Guifen Li
    Mei Wang
    David Dilworth
    Kerrie Barry
    Michael Udvardi
    Jeremy Schmutz
    Yuhong Tang
    Ying Xu
    Biotechnology for Biofuels, 11
  • [6] Assessment of episignature analysis using PacBio long-read sequencing
    Ivashchenko, Veronique
    Hampstead, Juliet
    Derks, Ronny
    Den Ouden, Amber
    Khazeeva, Gelana
    Van den Heuvel, Simone
    Timmermans, Raoul
    Galbany, Jordi Corominas
    Pfundt, Rolph
    Hofste, Tom
    Yntema, Helger
    Vissers, Lisenka
    Hoischen, Alexander
    Gilissen, Christian
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 1777 - 1778
  • [7] Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing
    Zuo, Chunman
    Blow, Matthew
    Sreedasyam, Avinash
    Kuo, Rita C.
    Ramamoorthy, Govindarajan Kunde
    Torres-Jerez, Ivone
    Li, Guifen
    Wang, Mei
    Dilworth, David
    Barry, Kerrie
    Udvardi, Michael
    Schmutz, Jeremy
    Tang, Yuhong
    Xu, Ying
    BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
  • [8] Exploring the genome and transcriptome of the cave nectar bat Eonycteris spelaea with PacBio long-read sequencing
    Wen, Ming
    Ng, Justin H. J.
    Zhu, Feng
    Chionh, Yok Teng
    Chia, Wan Ni
    Mendenhall, Ian H.
    Lee, Benjamin P. Y-H.
    Irving, Aaron T.
    Wang, Lin-Fa
    GIGASCIENCE, 2018, 7 (10):
  • [9] Long-Read Annotation: Automated Eukaryotic Genome Annotation Based on Long-Read cDNA Sequencing
    Cook, David E.
    Valle-Inclan, Jose Espejo
    Pajoro, Alice
    Rovenich, Hanna
    Thomma, Bart P. H. J.
    Faino, Luigi
    PLANT PHYSIOLOGY, 2019, 179 (01) : 38 - 54
  • [10] Detection of four isomers of the human cytomegalovirus genome using nanopore long-read sequencing
    Nanamiya, Hideaki
    Tanaka, Daisuke
    Hiyama, Gen
    Isogai, Takao
    Watanabe, Shinya
    VIRUS GENES, 2024, 60 (04) : 377 - 384