Stability Analysis of a Finite Difference Scheme for a Nonlinear Time Fractional Convection Diffusion Equation

被引:1
作者
Acosta, Carlos D. [1 ]
Amador, Pedro A. [1 ]
Mejia, Carlos E. [2 ]
机构
[1] Univ Nacl Colombia, Dept Matemat & Estadist, Manizales, Colombia
[2] Univ Nacl Colombia, Escuela Matemat, Medellin, Colombia
来源
ANALYSIS, MODELLING, OPTIMIZATION, AND NUMERICAL TECHNIQUES | 2015年 / 121卷
关键词
Caputo fractional derivative; Finite difference scheme; Stability; CFL; TVD;
D O I
10.1007/978-3-319-12583-1_10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinear time fractional convection diffusion equation (TFCDE) is obtained from a standard nonlinear convection diffusion equation by replacing the first-order time derivative with a fractional derivative (in Caputo sense) of order a. (0, 1). Developing numerical methods for solving fractional partial differential equations is of increasing interest in many areas of science and engineering. In this chapter, an explicit conservative finite difference scheme for TFCDE is introduced. We find its Courant-Friedrichs-Lewy (CFL) condition and prove encouraging results regarding stability, namely, monotonicity, the total variation diminishing (TVD) property and several bounds. Illustrative numerical examples are included in order to evaluate potential uses of the new method.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 17 条
[1]   Monotone Difference Schemes Stabilized by Discrete Mollification for Strongly Degenerate Parabolic Equations [J].
Acosta, Carlos D. ;
Buerger, Raimund ;
Mejia, Carlos E. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (01) :38-62
[2]  
[Anonymous], 2006, THEORY APPL DIFFEREN
[3]  
[Anonymous], ESTUDIO GENERALIZACI
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]  
[Anonymous], ELECT J DIFFER EQUAT
[6]  
[Anonymous], 2011, Aust. J. Basic Appl. Sci.
[7]  
ARORA AK, 1987, INDIAN J PURE AP MAT, V18, P931
[8]   A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes [J].
Bürger, R ;
Coronel, I ;
Sepúlveda, M .
MATHEMATICS OF COMPUTATION, 2006, 75 (253) :91-112
[9]   Fractional diffusion equations by the Kansa method [J].
Chen, Wen ;
Ye, Linjuan ;
Sun, Hongguang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1614-1620
[10]   On numerical methods and error estimates for degenerate fractional convection-diffusion equations [J].
Cifani, Simone ;
Jakobsen, Espen R. .
NUMERISCHE MATHEMATIK, 2014, 127 (03) :447-483